
AD-A284 668

CDRL: B008
29 January 1994

SSELECTE
SEP 1 5 1994

F

Software Architecture Seminar Report
Central Archive for Reusable Defense Software
(CARDS)

Informal Technical Data

rim
Amul_ Ong

Central Archive for Reusable Defense Software

STARS-VC-B002/001/00
29 January 1994

Mhs doclumefi has been approved
I to, public rei-•vs anud salos its

di stribut1o, s uimit.

Sj " J, ~ 74-29613", 01(lllllll(ll
H ll((l

CDRL: B008
29 January 1994

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Software Architecture Seminar Report
Central Archive for Reusable Defense Software

(CARDS)

STARS-VC-BO08/O01/0O

29 January 1994

Informal Technical Data

CONTRACT NO. F19628-93-C-0130
Line Item 0002AB

Prepared for: Accesion Fos

NTIS CRA,"'i
DTIC rAIS

Electronic Systems Center unannou,• ej
Air Force Material Command, USAF Justificztelt

Hanscom AFB, MA 01731-2816
By

Prepared By: Distr ibution j
Avjja.!•,, .;.y r .- : ...

Azimuth Incorporated A- . o ..
under contract to Dist Spe;01

Unisys Corporation
12010 Sunrise Valley Drive

Reston VA 22091 -

Distribution Statement "A"
per DoD Directive 5230.24

Approved for public release, distribution is unlimited

CDRL: B008
29 January 1994

INFORMAL TECHNICAL REPORT
For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Software Architecture Seminar Report
Central Archive for Reusable Defense Software

(CARDS)

STARS-VC-B008/001/00

Informal Technical Data
29 January 1994

CONTRACT NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:.

Electronic Systems Center
Air Force Material Command, USAF

Hanscom AFB, MA 01731-2816

Prepared By:

Azimuth Incorporated
under contract to

Unisys Corporstion
12010 Sunrise Valley Drive

Reston VA 22091

CDRL: B008

29 January 1994

Data ID: STARS-VC-B008/001/00

Distribution Statement "A"
per DoD Direcve 5230.24

Approved for public release, distribution Is unlimited

Copyright 1994, Unisys C"rporation, kRtc- ",Irginia
and Azimuth, Incorpoated

Copyright is assigned to the U. S. Govermaot, upon delivery thereto, in accordance with
the DFARS Special Works Clause

Developed by: Azimuth, Incorporated under contract to
Unisys Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release unde Distribution "A" of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated.
Sponsored by the U. S. Advanced Research Projects Agency (ARPA) under contract F19628-93-
C-0130 the STARS program is supported by the military services with the U. S. Air Force as the
executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated under
Distribution "A" and without fee is hereby granted, providing that this notice appears in each
whole or partial copy. This document retains Contractor indemnification to the Government
regarding copyrights pursuant to the above referenced STARS contract. The Government
disclaims all responsibility against liability, includ1,ng costs and expenses for violation of property
rights, or copyrights arising out of the creation v- use of this document.

In addition, the Government, Unisys, and its subcontractors disclaim all warranties with regard to
this document, including all implied warrantieb of merchantability and fitness, and in no event
shall the Government, Unisys, or its subcontractor(s) be liable for any special, indirect, or
consequential damages or any damages whatsoever resulting from the loss of use, data, or profits,
whether in action of the contract, negligence, or ,ther tortious action, arising in connection with
the use or performance of his document.

CDRL: B008
29 January 1994

INFORMAL TECHNICAL DOCUMENT
Software Architecture Seminar Report
Cental Archive for Reusable Defense Software
(CARDS)

Principal editors:

H. Jeff Facemire

Aleisa Petracca

Stephen Riesbeck

Approvals:

System Architect Kurt Wallnau

Program Manager Lorraine Martin

(signatures on File)

CDRL: B008

29 January 1994

ABSTRACT

In order to increase awareness, explore current research into software architectures as a means
of implementing software reuse, and examine current practices and issues involving
architectures, the Central Archive for Reusable Defense Software (CARDS) Program
sponsored a Software Architecture Seminar and Workshop at West Virginia University's
Concurrent Engineering Research Center (CERC) facility in Morgantown, West Virginia on
November 16 and 17, 1993. The goals of the Seminar and Workshop were to understand the
various meanings of software architecture, current research in the field of architecture, and
current efforts in applying software architecture. This document provides highlights of the
Seminar and Workshop.

This document contains an overview of the proceedings of the Architecture Seminar on
Tuesday, November 16 and the Architecture Workshop on Wednesday, November 17. This
includes issues discussed, questions and answers, working group discussions, and references.
This document also contains presentation slides from the Seminar, the Seminar panel
discussion, and the Workshop.

IV

CDRL: B008
29 January 1994

PREFACE

Just as the CARDS Software Architecture Seminar and Workshop could not have been a
success without the efforts of many individuals, this document also is based on the efforts of
many contributing authors. Thanks to primary authors Kurt Wallnau, Paul Kogut, Charlie
Snyder, and Kerri Haines, of Unisys Corporation, for their efforts, work, and research, and all
CARDS Program members who contributed to the Seminar and Workshop.

The CARDS Program also thanks all participants, who were able to make the Seminar and
Workshop enjoyable and enlightening.

Comments on this document are welcomed and encouraged.

vi

CDRL: B008
29 January 1994

TABLE OF CONTENTS

1 Introduction ... 1
1.1 The CARD S Program ... 1
1.2 Document Organization .. 2

2 Software Architecture Seminar .. 3
2.1 Seminar Proceedings Summary ... 3
2.2 Seminar Proceedings Issues ... 3

2.2.1 Style .. 4
2.2.2 Architectures Defined ... 4
2.2.3 CARDS Approach .. 5

2.3 Seminar Panel Discussion Summary ... 5
2.4 Seminar Panel Discussion Issues ... 6

2.4.1 Open Systems ... 6
2.4.2 Structural M odeling and Proposals ... 6
2.4.3 The New Concept of Architecture ... 7

3 Software Architecture W orkshop ... 8
3.1 W orkshop Presentation Summary ... 8
3.2 W orkshop Presentation Issues .. 8

3.2.1 The Role of Software Architectures .. 8
3.2.2 Investment Considerations .. 9
3.2.3 Architectures Defined ... 9

3.3 W orkshop W orking Group Summaries and Issues .. 10
3.3.1 W orking Group One ... 10
3.3.2 W orking Group Two .. 11
3.3.3 W orking Group Three ... 12
3.3.4 W orking Group Four ... 13
3.3.5 W orking Group Five .. 14
3.3.6 W orking Group Six .. 15

4 Architecture Seminar and W orkshop Summary .. 16
4.1 Evaluation Form Summary ... 16

4.1.1 Overview ... 16
4.1.2 Detailed Comments .. 16
4.1.3 Evaluation Form Results .. 17

5 Architecture Seminar and W orkshop Presentation Slides .. 20
Software Architecture Seminar Introduction .. 21
Session I W hy Architectures ... 35
Session II Senses of Architecture: Building the Category ... 59

M anufacture Perspective ... 63
Engineering Perspective .. 67
Architecture Perspective ... 85
Scientific Foundation .. 99

vii

Engine gie Applica tion ... 117
Conideraon in Practice .. 133

Session HI Software Architecture and Reuse ... 141
Architecture "Defined" .. 143
Towards a Science of Architecture .. 153
Trends in Architecture for Reuse ... 161
Architecture-Based Reuse Systems ... 191

Session IV Architecture-Based Reuse Tools .. 217
Session V CARDS Approach to Reuse and Software Architecture 275

CARDS Scientific ... 277
CARDS Engineering 289
CARDS Transition-tco-Practice ... 309

Software Architecture Seminar Panel Discussion Introduction 322
M r. T.F. "Skip" Saunders, M itre Corporation ... 324
M r. Hans Polzer, Unisys Corporation .. 372
M r. Stan Levine, US Army CECOM .. 384
Capt Frederick Swartz, USAF ASC/YI .. 424

Software Architecture W orkshop Introduction .. 436
M r. W ill Tracz, IBM FSD ... 442
M r. M ark Gerhardt, ESL, Inc ... 458
M s. Deborah Gary, DISA .. 472
M r. Jim Baldo, Unisys ... 480
M r. Charles Plinta, ACCEL ... 490
Capt Paul Valdez, USAF ESC/ENS .. 506
M r. Ulf Oisson, CelsiusTech Systems ... 514
M r. Jim Bonine, Design M etics Technology .. 528
M r. Steve Roodbeen, NUW C .. 534
M ajor Grant W ickm an, CECOM ... 544
Capt Kelly Spicer, USAF SW SC/SM X ... 552
M r. Stellan Karnebro, Defence M ateriel Administration .. 562

Appendix A - Participants ... A-1
Appendix B - Bibliography ... B-1

viii

CDRL: B008
29 January 1994

LIST OF TABLES

Table 1: Time Given for Each Session .. 18
Table 2: The Material Covered .. 18
Table 3: Contents of Concepts 19
Table 4: Supporting Services .. 19
Table 5: Panel Discussion .. 19

ix

SrARS-VC-BOO8=so0 29 J=nuary 1994

1 Introduction

In an effmt to improve software quality and cost effectiveness, the Department of Defense
(DoD) is actively endorsing software reuse, the process of implementing new systems by
using existing software products and information. As noted in the DoD Software Reuse
Initiative Vision and Strategy, DoD aims:

[tio drive the DoD software community from its current "re-invent the
software" cycle to a process-driven, domain-specific, architecture-centric,
library-assisted way of constructing soft re.

A key element of the Vision and Strategy, architecture-centric reuse involves defining reuse-
oriented flexible architectures for DoD domains which are well supported by industry and the
R&D community, then spurring investment in creation of generic software components and
tooling which facilitates development of systems complying with approved architectures. The
creation of generic components must be independent of development of fieldable production
systems. One of the principal challenges of reuse is to develop processes and standards that
can facilitate development of a convention that enables effective sharing of components.

In order to increase awareness, explore current research into software architectures as a means
of implementing software reuse, and examine current practices and issues involving
architectures, the Central Archive for Reusable Defense Software (CARDS) Program
sponsored a Software Architecture Seminar and Workshop at West Virginia University's
Concurrent Engineering Research Center (CERC) facility in Morgantown, West Virginia on
November 16 and 17, 1993. The goals of the Seminar and Workshop were to understand the
various meanings of software architecture, current research in the field of architecture, and
current efforts in applying software architecture. This document provides highlights of the
Seminar and Workshop.

1.1 The CARDS Program

The Central Archive for Reusable Defense Software (CARDS) Program is a concerted DoD
effort to transition advances in the techniques and technologies of domain-specific software
reuse into mainstream DoD software procurements. This technology transition effort
combines a concrete demonstration project to illustrate the potential of domain-specific reuse
-- in this case for the domain of Command Centers -- with a broad-scale attack on the cultural
and contractual inhibitors to software reuse. The CARDS Program goals are to:

"* Produce, document, and propagate techniques to enable domain-specific
reuse throughout the DoD

"* Develop and operate a domain-specific library system and necessary tools
"* Develop a Franchise Plan which provides a blueprint for institutionalizing

domain-specific, library-centered reuse throughout the DoD
"* Implement the Franchise Plan with users and provide a tailored set of

services to support reuse

Page 1

STARS-vcN OO•Do00 29 Jumy 1994

1.2 Document Organization

his document is organized into five chapteui and two appendices.

Chapter One, Invrvodon, provides a general imtoduction to the document.

Chapter Two, Software Architecture Seminar, gives a summary of the Seminar and Seminar
Panel Discussion, along with highlights of issues discussed.

Chapter Three, Software Architecture Workshop, provides a summary of the Workshop and
issues surrounding the Workshop presentations.

Chapter Fom, Architecture Sninar and Workshop Summary, contains a summary of the two
day event based upon evaluaton forms which were distributed to all participants.

Chapter Five, Architecture Seminar and Workshop Presentation Slides, contains over 500

presentation slides from the Seminar. Panel Discussion, am• Workshop.

Appendix A is a list of all participants, along with contact information.

Appendix B is a bibliography of sources used for development of the Seminar, and suggested
sources for additional information.

Page 2

STARS-VC-BO.8)00 29 January 194

2 Software Architecture Seminar

This Chapter outlines the proceedings and key points of the CARDS Software Architecture
Seminar conducted on November 16, 1993. The Seminar consisted of formal presentations
followed by a panel discussion. Accompanying presentation slides and speaker notes for the
Seminar and the Panel Discussion are located in Chapter Five; page numbers for the slides are
noted in text.

2.1 Seminar Proceedings Summary

The Architecture Seminar was divided into five sessions:

"* Session I Why Architectures?

"* Session II Senses of Architecture: Building the Category

"* Session Ell Software Architecture and Reuse

"* Session IV Architecture-Based Reuse Tools

"* Session V CARDS Approach to Reuse and Software Architecture

Session I (pages 35-58) of the Seminar focused on why architectures are needed, why
architecturms are becoming moe evident, and definitions of architecture. A major topic of
discussion in Session I was the various definitions of architecture and style; the notion of
architecture often depends on the perspective of the individual or organization.

Session II (pages 59-140) built upon the definition of architecture discussion in Session I,
drawing parallels to perspectives in manufacturing and engineering. Session II then contained
overviews of software architecture from a scientific foundation, engineering application, and
considerations in practice.

Session Ell (pages 141-216) examined architecture from a reuse standpoint, concentrating on
architecture "defined," the science of architecture, trends in architecture for reuse, and
architecture-based reuse systems.

Session IV (pages 217-274) involved a examinatiun of specific architecture-based reuse tools.

Session V (pages 275-321) presented the CARDS approach to Domain Engineering activities
as related to software architectures and reuse from scientific, engineering, and transition-to-
practice views.

2.2 Seminar Proceedings Issues

Throughout the Seminar, many participants raised issues on Seminar topics which generated
discussion. This section highlights some of these issues and includes some of the questions
raised by participants.

Page 3

STARSVOBO00SAO01 29 Jmr•y 1994

2.2.1 Style

A significant topic of discussion during the Seminar was arclutectural style.

The question was raised: can we name styles of architecture (pages 87-98, 143-160)? It was
offered that there are certa spci os and rules, but there are limited capabilities on
how to apply these specializations and rules. There is a significant challenge in that there is no

formal representation or formal basis to build systems. But, there are tools for use in the "real"
world.

It seems we are still in a pre-paradigm stage regarding style. There may be a style emerging

for real time systems but it is very immature; since it is difficult to get a good definition for
architecture, it is diflicult to get a clear style. There is still confusion on defining architectures,
and what style actually is.

One participant's previous understanding of style. was design patterns plus organizational
structures plus the ensemble (system specific features), but now the notion of style implies
globality. Another participant offered that a computational model (how the components
communicate) is the style, and that the computational model is the prime distinguishing
feature between architectural styles. Also, there are well known computational models.

With regard to the characteristics of an architecture, one participant stated that he'd like to
apply a test to architecture and style: if one has an architecture to preserve behavioral
attributes (such as security), where is this infonration captured? It was observed that some
systems may have wonderful qualities but bad style. These questions must be considered:
What elements of design have to be represented? Where does it stop? It was offered that
architectural models should focus on an understanding of style and coherence.

Another participant noted that there is a larger issue still; everything has an architecture but
architectures are viewed subjectively. However, there is objectivity regarding style:
understandability.

The point was also made that with regard to emphasis on style, the emphasis must be on all
elements. It was also pointed out that one should ensure that style captures operational
principles; software designs often end up with style cluttering it up or getting in the way.
Another observation was that functionality is the key; style alone is not enough.

2.2.2 Architectures Defined
With regard to the definition of architectures (pages 45-50, 85-98, 145-152), one participant
noted that based on experience, architectures should be at a higher level of reuse. There needs
to be a move away from expressing this as, for example, a compiler, so that architectures can
move closer to DoD application areas and can be used as examples for better understanding
by management level personnel. It was also noted that somewhere there should be data and
process views for mature design areas, such as combat weapons systems. Another participant
noted the importance of domain independence; we should think of things that will work in

Page 4

SrARS-VC-BOOS1 O,VOW 29 Jaruuy 1994

different systems.

In a discussion of work done by Don Batory regarding design methods and architectuma style
(pages 125-126), several participants made comments. Some felt that Batory's work is similar
to others, but differs only in perspective. It is notable that Batory used a recursive way of
putting modules together, with the only difference being data types. Another participant noted
that Batory's method "feels" different, while another noted that Batoxy's work was somewhat
domain dependent.

The point was made that Batory's work looks similar to other processes, but that he arrived at
his results in a different manner. Batory didn't start with idioms; he performed a domain
analysis and abstracted idioms. Through domain analysis and domain modeling, new idioms
can be found and the form of architecture can be the same.

It was also questioned if language should be used to drive the system. A response was that
form comes from the design method, and that langdage should be at the level of components
and connectors. One participant felt that there was no difference, while another felt that the
difference is only in perspective.

It is possible the difference between architecture and softwarelcomputer systems is that
computer systems deal with codifying a wide range of business processes. When building a
system to support these processes, there is a clash between pre-defined components and the
process which you're trying to support. This calls for a close look at requirements.

In Session I1, seven characteristics of software architecture were discussed (pages 147-150).
One participant noted that it is easy to see the part in the whole, but how can one see the
whole? Does seeing the part in the whole actually change the part? One reply was that if one
can see the part, such as a subsystem, one doesn't necessarily need to see the whole, but can
gain an understanding of the whole system.

2.2.3 CARDS Approach

In the discussion concerning the CARDS approach to reuse and architectures (pages 281-285,
301-308), one participant observed that Prieto-Diaz's idea of a faceted classific-tioi sc~hme
usually results in 5 or 6 facets, while the CARDS approach involves more. CARDS chooses to
show more relationships, and, having a model-based library, concentrate on representing a
domain-specific model. Also, one participant noted that a knowledge based classification
scheme can also involve a high cost to implement and maintain.

2.3 Seminar Panel Discussion Summary

The panel discussion included presentations from four participants, followed by a question
and answer discussion. The four panel members were:

"* Mr. T. F. "Skip" Saunders, Mitre Corporation

"* Mr. Hans Polzer, Unisys Corporation

Page 5

STARS-VC-BOO8•AOJO 29 Jammy 1994

"* Mr. Stan Levne, US Army Communications Elecrnics Command
(CECOM)

" Capt Frederick SwarM Traiing System Program Office, ASCIYE

The panel discussion consisted of presentations firom each panel member. Mr. Saunders
presented views on architecture and reuse in terms of three points: goals, views, and trends
(pages 324-371). Mr. Polzer's presentation (pages 372-383) concentrated on the economic
factors surrounding architectures. Mr. Levine offered some case history examples and lessons
learned on projects involving architectures (pages 384-423). Captain Swartz discussed the
role of architectures or structural models in proposals (pages 424-435).

2.4 Seminar Panel Discussion Issues

2.4.1 Open Systems
One participant questioned the panel regarding opeh systems. The participant's customer had
requested that architectures be re-defined to open systems, presenting difficulties in
conflicting standards. The question was raised: are architectures and open systems the same?

With regard to open systems and architecture, issues such as compatibility and interoperation
are often difficult; products are often built to different standards. However, these issues need
to be considered from an architectural standpoint so that components will connect in a
disciplined manner. This is starting to surface in the commercial sector. However, a problem
in the Government arena is that the Government can not specify one single system; this could
lead into contracting/legal difficulties. Therefore, the Government states the properties of a
desired system, then leaves it up to the contractor to decide how to meet the requirements. The
Government then evaluates the contractor's approach.

The solution also depends on one's definition of open system. A system doesn't necessarily
have to follow a Government sanctioned standard. One approach is to follow an economic
approach: what/how much financial resources are available and "is it for me" in relation to
risk? Often open systems aren't really open; there are so many alternatives. "Open"
sometimes means avoiding a large economic lock-in while still accomplishing what was
wanted. Also, from the Government point of view, there may be times when a Government
agency/customer can't afford an open system. It may be best to let the contractor decide.

2.4.2 Structural Modeling and Proposals
Several participants were interested in specifying certain architectures (referred to in this
context as structural models) in Statements of Work (SOWs) and Requests For Proposal
(RFPs) (pages 424-435).

At times, the Government may not want to limit the contractor by specifying a certain
architecture; other times, the Government may be limited by policy assuring that bids are
competitive. Also, architectures/structural models are still relatively new and not well defined.

Page 6

SrAR-VC-BooB M1A 29 Jammay 1994

Architectures/structural models can be in SOW. as long u a specific product is not specifie.
However, there need to be truaied people who know the structural model and there must be no
flaws in the structural model. Also, if the awrcitecturelstructural model is not specified, then no
one may bid it.

In order to evaluae proposals, evaluatable criteria must be in the SOW/RFP. The criteria that
are pushing the use of a certain architeeture must be known. A track record that the
architecture works will help. If there is no track record, one option is to let the contractor offer
an architecture or structural model, remembering that the burden will still remain on the
issuer/Government. It is important to know what attributes are desired.

2A.3 The New Concept of Architecture
There was some debate as to whether architectures are a new concept, or have been used for
some time. Often architectum are developed unplanned. While the development community
seems to have been using architectures for a long time, current emphasis is on their
formalization. Pieces of a system are better defined when this formalism is in place. It also
appears that vendors are now able to dictate architectures used in their products.

Page 7

STARS-VOB008I001100 29 Jamsury 1994

3 Software Architecture Workshop

This Chapter outlines the proceedings and Jaey points of the CARDS Software Archiutecture
Workshop conducted on November 17, 1993. The Architecture Workshop began with
presentations from leading Government and industry specialists on current efforts and
research in software architecture. The paticipants then split into six working groups to
continue discussion and examine issues in particular fields of interest. Accompanying
presentation slides and speaker notes for the Workshop are located in Chapter Five of this
document; page numbers for the slides ar noted in text.

3.1 Workshop Presentation Summary

Fourteen individuals representing Government and industry gave short presentations on their
current work in archit . These diverse presentations offered an enlightening view into
the latest views and practices regarding software architectur, their respective definitions,
and role in application engineering. Workhop presentations were given by:

"* Mr. Will Thcz, IBM FSD (pages 442-457)
"* Mr. Mark Gerhardt, ESLI Inc. (pages 458-471)
"* Ms. Deborah Gary, DISA (pages 472-479)
"* Mr. Jim Baldo, Unisys (pages 480-489)
"* Mr. Charles Plinta, ACCEL (pages 490-505)
"* Capt Paul Valdez, USAF ESC/ENS (pages 506-513)
"* Mr. Ulf Olsson, CelsiusTech Systems (pages 514-527)
"* Mr. Jim Bonine, Design Metrics Technology (pages 528-533)
"• Mr. Steve Roodbeen, NUWC (pages 534-543)
"* Major Grant Wickman, CECOM (pages 544-55 1)
"* Capt Kelly Spicer, USAF SWSC/SMX (pages 552-561)
"* Mr. Stellan Kamebro, Defence Materiel Administration (pages 562-574)

3.2 Workshop Presentation Issues

Because of the diverse composition of the Workshop speakers, many issues surrounding
software architectures and reuse were examined. The following is an overview of some of
those issues, along with key points of discussion.

3.2.1 The Role of Software Architectures

People often feel that they're communicating requirements effectively, but may instead have
different views. An architecture can serve as a common point of reference. Blueprints,
schematics, and the like are all ways that people communicate in their elements.

Page 8

STARS-VC-BOO•S•0U0 29 Jimuy 1994

Architecture is the software communication vehicle. From an architecture point of view,
systems are treated as components.

How can arhitectres be used in maintenance and sustained engineering activities? Mission
needs shift with time; as time goes by, things change. It is valuable to have a process for
transition from one architecture to another as technology changes.

In using domain specific software architectures, meeting requirements and creating particular
applications in a solution space may create tension. A solution is to draw the line between the
problem space and the solution space: create a domain model, pick out constraints, then create
specific applications.

Currently, components aren't always compatible. Fatal component combinations must be
recognized. The more layers that are added to a software architecture, the less interaction
there may be between components. In some cases, it may be best to extract high level
elements and start from scratch, rather than try to extract low level components to build a
system.

3.2.2 Investment Considerations
The more detailed standards are, the more difficult it may be to communicate to another
platform. One solution is to publish a set of "building codes" with a broad scope that will
allow for architected systems.

There must be investment into a software architecture before it can be used. Initial cost of
software architecture development may be prohibitive. Also, some projects may be closing
down due to budget constraints. The knowledge from these projects needs to be captured
rather than lost. Tbis approach involves capturing a design hierarchy, documentation,
development history, and design decisions.

Some felt the use of architectures may not apply to all kinds of systems, such as real time
embedded systems at this point in time.

Experiences and experiments in developing architectures need to be documented, even from
fatal architectures.

3.2.3 Architectures Defined
A good architecture is stable with a cover of customizations, while a poor architecture is the
reverse with props to make it stable. When customizations get too bulky, they outweigh the
base and make the system unstable.

Architectures are frameworks, but are not necessarily a solution; architectures are a layered
subset of the solution.

Every design problem has an objective logical architecture. A logical architecture is an
architecture in purely mathematical form.

Page 9

SrARS-VC-BOO&AOLM~ 29 January 1994

3.3 Workshop Working Group Summaries and Issues

The Workshop participants then separated into working groups to identify common problems
involving architecture and reuse implementation, and to develop a common approach to
solutions to these issues. The groups were organized as follows:

"* Working Group 1: Evaluation and Measurement of Architectures

"* Working Group 2: Software Architecture Technologies

"* Working Group 3: Software Architecture and Reuse

"• Working Group 4: Software Architecture and Standards

"* Working Group 5: Software Architecture and Strategic (Product-line)
Planning

"* Working Group 6: System Architecture Technical Committee for Reuse
Library Interoperability

3.3.1 Working Group One: Evaluation and Measurement of
Architectures

Working Group One concentrated on two topic questions:

"* For procurement issues, how can many proposed architectures be
evaluated?

"• For design issues, what are the "architecture-level" qualities which can
and should be measured?

In order to compare one architecture against anothe, we must establish a common
understanding of what we mean when we refer to an architecture. Properties we are looking
for in an architecture should be specified. We should provide our definition of an architecture
and give examples of how we represent it.

1. The offeror must describe the architecture in 10 pages or less using the

following guidelines:

"* Describe the basic elements which make up the architecture.

o Define the rules for how the ejements interact with each other.

" Describe how these basic elements make up the system design.

Evaluation criteria:

"* Is the design based on the architecture?

"* Is the style for defining and representing the architecture consistent?

"• Are the functions separate from the interactions?

"* Are the rules for combining the elements consistent?

Page 10

[= ~zm~um mmm nnnumm • nl ll~ll mll •lmmnmw I

SrARS-VC-BOOJXn01 29 Jamnay 1994

2. Evaluate the offero's architecture on how well it addresses non-functional
requim nents (e.g., interopemraity, ability to tolerate change. cheap to buil
use of COTS). The offeror must explain and/or demonstrate this through a
prototype.

Evaluation cniteria:

"• Can the architecture incorporate new functionality based on new
technology?

"* How much COTS software is used and at what level?

"* The ability to address changes in requirements.
"* How the system interacts with other systems in the domain.

"* Does the architecture incorporate open system standards?

"* Can stress points be identified? How does the architecture compensate?

3. Evaluate the offeror's architecture with respect to how it is similar or different

from examples provided in the RFP.

Evaluation criteria:

"* How much does the offeror understand about the domain?

"* Did the offeror find innovative improvements to the architecture?

3.3.2 Working Group Two: Software Architecture Technologies
Working Group Two focused on the following topic questions:

"* What are the current and emerging technologies for software
architecture?

"• Where is the "low hanging fruit" (i.e., easily attained but useful
technology)?

Views about software architecture technology depend upon your goal and perspective.

Current technologies for software architecture involve the following issues:

1. Application Composition

"* Composition formalisms

"* Common infrastructure

2. Techniques for Reusable Components

"* Multi-level

"* Includes context for use definition (operational, testing, development)

Page II

STARS-VC-BO81,00 29 Jamnuy 1994

3. Legacy Systemns/Software

"* Extraction of architecture and componentf

"* Reuse in existing form

Although technologies for software architectures still need to emerge, there currently is
,vident "low hanging fruit."

1. Object-Oriented Technology

"* Development

"* Re-engmieenng

2. Formalisms For Composition

"• Type Expressions (Batory)

"* Architecture Description Languages

3. Interconnection Techniques

"* LIF, MIF, POLYiH

"* UNAS
"* Wrappers/mediators

"* Standards: CORBA, OSI, etc.

4. Parameterized Programming

5. Consensus Definition of Architecture

6. Inductive Analysis of Current Exemplars

7. VHDL (Bailor)

8. Ontological Structuring

3.3.3 Working Group Three: Software Architecture and Reuse
The topic questions for Working Group Three were:

"* What does it mean for an architecture to be "reusable?"

* What is needed for product-line architectures to sustain a commercial
component provider industry?

Working Group Three presented an example of a layered architecture for discussion. Layering
helps in understanding design. However, abstractions may be violated in implementation, and
layering may be incomplete. Advantages for reuse include a partitioning strategy, and an
abstraction mechanism. A disadvantage for reuse is a need for optimization.

Page 12

STARS-VC-EOM LW0 29 January 1994

With regard to reusable arcitectures in domais, t oarchecture should be reusable and
should also support the reuse of components. Do these conflict? Is there an issue sumrounding
the variability of components versus the variability of the architecture? One strategy is to
utilize generative techniques and a generic architecture, which may require trade-offs. It is
also noteworthy that a small domain is more vulnerable to external architecture constraints,
and that a lrge domain involves a large number of resources.

There are also numerous issues for considaration.

Different domains, organizations, and/or audiences may have different architecture languages,
views, representations, and levels of abstraction (ravioli). How can these be made reusable?

If context is linked to architecture, what about "domain-independent" idioms? Does a
class/mheritance based taxonomy help capture this?

Tension between architectural "quality" (from first principles) versus fit to existing systems.

Are there "complete" architectural style taxonomies, e.g., 00 procedural, pattern-directed
inference, list processing?

An architecture must include at least components, connections, constraints, plus context and
dynamic aspects.

Are generic architectures applicable for every domain? Are they high level designs with "plug
and play" variability at lower levels?

What is meant by reuse in architecture? Reusable architectures? Component reuse in
architectures? What is the difference between usability and reusability?

Architectural representations as assets: Freely accessible versus export controlled? Are they
attractive? Are they from fielded systems?

Facets/keywords for describing architectures: Are they agreed to (de facto)? Where are they
documented (standards)? Can they be retrofitted to existing assets?

Is a layered architecture descriptive enough to describe everything needed to develop a
system? For reusability?

Are architectures from Domain Analysis results integratible with existing components? Are
architectures from existing systems/components limited to existing capabilities?

3.3.4 Working Group Four: Software Architecture and Standards
Working Group Four examined two topic questions:

What is the relationship between architecture and open systems?

Page 13

SrARS-VC-BOO)WIOA 29 Januay 1994

What are the areas of architecture standardization, e.g., "building
codes?"

There is defiiitely a relationship between software architecture and open systems. While a
"good" architecture is cheap and modifiable, a "good" architecture also exploits open systems
for the lifetime of the product. However, an open system should not dictate the architecture. In
this context, there are restrictive standards; this applies to a wide range and to certain system
attributes. Also, ther need to be enabling standards which deal with market opportunity,
especially in areas such as component suppliers and cost effective system solutions.

The topic of standardization and architecture often involves architecture and multiple
"building codes." There w often degrees of constraining architecture, and regional vanation
in the "codes." There needs to be standardization at various layers of software architecture.
The purpose of standardization has multiple elements, such as:

"• Portability
"* Interoperability

"* Product Family
"* Component Supplier Market
"* Conformance
"* Bureaucracy Preservation

Approaches to standardizaion include:

"* Proprietary, Publicly Known
"* Negotiation
" Forum

Areas for standardization can include:

"* Interfaces - syntax connections

"* Data Consistency - semantic connections

"* Usage Consistency

3.3.5 Working Group Five: Software Architecture and Strategic
(Product-line) Planning

The topic questions for Working Group Five were:

"* Where in the DoD should architectures be specified? Maintained?
Implemented? What are the pros/cons of various approaches?

"* How can DoD architectures, if specified, be used prescriptively in
procuring systems?

Group Five noted that there must be some assumptions made:

"* Offerers may provide an architecture.
"* It is important that the Government own the Domain Model (source of

evaluation criteria).

Page 14

STARS-VC-BOO8A•1DO 29 Jamnry 1994

The following issues were raised.

How do we convey what we mean by architect•-r? This can be done through white papers and
examples.

What questions can be asked about architecture which can discriminate alternative proposals?

There is reasonable certainty that answers to this question will be different.

How can you get common representations?

How is it possible to get an apples to apples comparison against criteria? Approaches include:

"* develop evaluation characteristics

"* likely to be non-functional
"* scenarios make these concrete and evaluatable

3.3.6 Working Group Six: System Architecture Technical
Committee for Reuse Library Interoperability

Working Group Six, a subgroup of the Reuse Library Interoperability Group (RIG),
concentrated on issues surrounding reuse library interoperability. A topic of discussion was:

* What are some techniques for analyzing and comparing architectures (of
reuse libraries) for interoperability?

The discussion was difficult because of vocabulary problems, but a suggestion was offered;
there should be at least the possibility of a domain analysis for interoperability. The Group
also discussed a Technical Reference Model (TRM) for interoperability. This can be divided
into three elements:

"* User Services (focus on the end user/the driver)

"* Support Services (common for interoperating applications)
"* Framework Services (common for all interoperating applications)

1. Using end user services maps to support services which maps to the
framework in order to interoperate.

2. Missing user services indicate missing support or framework services.

3. Adding support or framework services implies new user services.

Projecting the TRM through the architecture shows the implications of the architecture style.
Also, this will work for designs and implementations, providing greater detail.

Page 15

SrARS-VC-BOSoMIAo 29 lany 1994

4 Architecture Seminar and Workshop Summary

Approximately eighty people attended the Seminar and Womkhop on November 16 and 17,
1993. Twenty-nine participants were from Government or DoD organizations, twenty-four
represented industry, twelve were from academia, and fifteen were from CARDS or other
organizations. Key points from the Seminar and Workshop include:

1. There were multiple, valid perspectives regarding architectures.

"* Computer Science (idioms, computational models, etc.)

"* Design (standards, methods, education, etc;)

"* Engineering (prediction, measurement, non-functionals, etc.)

"• Systems (high-level designs for applications)

2. There is a relationship between architecture and software reuse.

"* High-level designs accompanied by context information
"* Trends toward intersection of object-orientation and event systems

3. There is significant interest in the subject of software architectures.

4. While the Seminar focused on technology, there ave equally strong
connections to economics.

Participant responses and results from evaluation forms are in the following sections.

4.1 Evaluation Form Summary

4.1.1 Overview

As Seminar and Workshop participants registered, they were provided with evaluation L-.d

feedback forms as part of their registration packets. Twenty-nine of the participants
responded, and the following results are based on those responses.

There was a consensus that the Seminar and Workshop were very successful and beneficial,
and that there should be similar events in the future, either annually, every two years, or every
six months. Many noted that there should be more time allotted, as a large amount of
information was presented in a relatively short time. Theore was a:so a consensus that there
should be smaller working groups which focus on pa;-ticuiar areas of interest.

4.1.2 Detailed Comments
The participants suggested that particular individuals be invited to future
Seminars/Workshops. That list includzs Bruce Anderson or a real building architect and a
movement training specialist (spatial analogies), Christopher Alexander, Gary Whitted
(IMASS Program), Rob Sturtenant (McDonnell Douglas and C71 Tr-'ogram), select individuals
from the software engineering community, architects from other fields (panel session), DISA,

Page 16

STARS-VC-0B00DU01A3 29 Jmuazy 1994

C1A. NRaD. MICOMK DSSA. service and DoD group leaders that are working on joint and
multiservice common -- itctus international representatives (Europe and Japan),
Reuben Prieto-Diaz, Sholom Cohen. Mary Shaw, and John Foreman.

Several suggestions were made regarding the Workshop. It was suggested that there be more
working groups and more time for discussion. Also, three groups in one room was
impractical. It would be better to have smaller working groups; if they must be large, they
should focus on diverse viewpoints with mechanisms for synthesizing input (e.g., future
search conference). Some noted that there should have been more information geared to the
participant who has limited or no previous knowledge of architectures. The next Workshop
should attempt to produce, as a group, a viewer definition of software architectures and
examples, including success stoies.

Several comments were also made with respect to how software architectures were defined
and presented. Comments indicated a good mix of CARDS and non-CARDS experts. One
attendee noted, "I think the audience was opened t6o broadly too early. It would have been
better to have an initial workshop to solidify the issues and CARDS viewpoints before having
a workshop/forum like this one." It would have also been useful to have the CARDS
Architecture Task Force (ATF) talk delivered earlier to provide some context. Also, the
tool/representation survey was presented with virtually no context and was, therefore,
i elatively of little benefit.

It was suggested that there be more specific architectures presented. Following this, have
participants provide constructive criticism, and break into a domain working group and
develop architectures. Then, present the results to the mail, group. There could have been
more discussion of the qualities of an architecture and distinctions between design and
architectures. Another suggestion was to have more examples and hands-on interaction.
Participants want information and examples which they can apply. One recommendation was
to use a lecture room that is more accommodating for this type of event.

Regarding supporting materials, significant papers or books might be made available, either
for free or purchase. Workshop presentation slides should be provided beforehand, and
handouts should also be provided from the panelists and invited guest speakers. A
speaker/attendee list should be available, as well as more information provided electronically.
A bibliography with list of references, citations, and resources should also be distributed.
Demonstrations of the tools should be included (if for nothing else, to interrupt the flow of the
"talking heads").

4.1.3 Evaluation Form Results

Ninety-six percent of responding participants acknowledged that they would be able to apply
knowledge gained from the Seminar and Workshop on the job and three percent were unsure.
Sixty-eight percent said they had some previous knowledge of software architectures, twenty-
nine percent had limited knowledge, and four percent indicated no previous knowledge of
software architectures. One hundred percent of responding participants said that their
knowledge of software architectures was enhanced or increased in some way. One hundred

Page 17

SrARS-VC-BOO&IU0 29 Jammy 1994

percent also desired to have fture seminars. Four percent preferred to have them quarterly,
twenty four percent preferred to have them semi-annually, sixty eight percent preferred to
have them annually, and seven percent preferred to have them every other year

Additional evaluation form results are summarized below.

% Adequate % Inadequate % About Right

Session 1 70 - 30

Session 2 73 8 19

Session 3 63 15 22

Session 4 58 27 15

Session 5 54 29 17

Session 6 65 -- 35

Table 1: TIme Given for Each Session

% Too Specific % Too General % Adequate

Session 1 4 -- 96

Session 2 4 9 87

Session 3 4 12 84

Session 4 5 22 72

Session 5 -- 13 87

Session 6 5 5 91

Table 2: The Material Covered

Page :8

STrARS-!VC-B0U081O 29 Jzuusy 1994

% Too Much % About Right % Not Enough

Session 1 - 100 -

Session 2 9 83 9

Session 3 8 63 29

Session 4 - 67 33

Session 5 73 62

Session 6 1 95 5

Table 3: Contents ofrConcepts

% Poor % Fair % Good % Excellent N/A

Refreshments 8 12 58 23

Facilities 8 15 50 26

Visual Aids -- 20 63 15 --

Lunch 19 19 50 8 4

Handouts --- 7 43 50 ---

Examples 27 46 15 12

Table 4: Supporting Services

% Poor % Fair % Good % Excellent N/A

Knowledge --- 8 48 44

Responses 5 15 24

Selection 9 57 35

Table 5: Panel Discussion

Page 19

STARS-VC-BOO0801A0 29 Jnaiy 1994

5 Architecture Seminar and Workshop Presentation Slides

This Chapter contains presentation slides from- the Seminar, the Seminar panel discussion, and
the Workshop. The slides are divided into three sections, prefaced by introductory slides.

Software Architecture Seminar slides (pages 21-321) are from the five Seminar sessions:

"* Session I Why Architectures (pages 35-58)

"* Session H Senses ofArchitecture: Building the Category (pages 59-140)
"* Session IIM Software Architecture and Reuse (pages 141-216)

"* Session IV Architecture-Based Reuse Tools (pages 217-274)
"* Session V CARDS Approach to Reuse and Software Architecture (pages

275-321)

Slides from the Seminar Panel Discussion (pages 322-435) were used by the four panel
members:

"* Mr. T.F. "Skip" Saundern, Mitre Corporation (pages 324-371)

"• Mr. Hans Polzer, Unisys Corporation (pages 372-383)

"* Mr. Stan Levine, US Army CECOM (pages 384-423)
"* Capt Frederick Swartz, USAF ASC/YTE (pages 424-435)

Software Architecture Workshop slides (pages 436-574) are from Workshop presentations
given by:

"* Mr. Will Tracz, IBM FSD (pages 442-457)
"* Mr. Mark Gerhardt, ESL, Inc. (pages 458-471)

"* Ms. Deborah Gary, DISA (pages 472-479)

"• Mr. Jim Baldo, Unisys (pages 480-489)
* Mr. Charles Plinta, ACCEL (pages 490-505)

"* Capt Paul Valdez, USAF ESC/ENS (pages 506-513)
"* Mr. Ulf Olsson, CelsiusTech Systems (pages 514-527)

"* Mr. Jim Bonine, Design Metrics Technology (pages 528-533)

"* Mr. Steve Roodbeen, NUWC (pages 534-543)

"* Major Grant Wickman, CECOM (pages 544-551)

"* Capt Kelly Spicer, USAF SWSC/SMX (pages 552-561)

"* Mr. Stellan Karnebro, Defence Materiel Administration (pages 562-574)

The slides from the Panel Discussion and the Workshop were optically scanned and imported
into this document. Page numbers are at the bottom right comer.

Page 20

A- -I-IIIIIIIII .__ I
Central Archive for Reusable

Defense Software
(CARDS)

Software Architecture Seminar
16 November 1993

Kurt C. Wallnau and Paul A. Kogut, Unisys Corporation

wit amMbana frm:

lam.. Ena•p, Unlays co"Madon
M•nl. ddt 0MD calwaodem

V~ alUnisys COPN110

TIwy HuWeMD, oU Lwamatoe.

Ve Uniys -aaao
Res" Men N, Unisys Capanidln

Chades Snyder, Unays Cporutlo~n
Nancy Sohdadteoh Uinisy. Cuporatlon

RagI W..dued, D60 Lab.

Acknowledgments

We want to thank the following contributors, without whose help this seminar
would not have been possible:

Tom Bock, Shelly Jones and George Jackelen, Electronic Warfare
Associates, for their heroic efforts.

Charlie Snyder, Unisys, for his organizational skills.

Jim Estep, Unisys, for his cool-headed optimism and ability to make things
happen.

22

Welcome to CERC

CARDS would like to thank the Concurrent Engineering Ressrch Center
(CERC) for donating the use of their facilities to host this seminar.

CERC was established In 1988 by the DoD'a Advanced Research Projects
Agency (ARPA) In response to a national need to Improve the product
development capabilities of the US. defense-Industrial base. As the
centerpiece of the (D)ARPA Initiative In Concurrent Engineering (DICE),
CERC's mission Is to design, develop, and promote concurrent engineering
technologles.

CERC has recently expanded the application of Its technology to the
healthcare Informatics domain. Funded by the National Library of Medicine,
CERC is developing a pilot healthcare Information system that will Integrate
the latest developments In multimedia, networking, and user Interfaces to
provide shared access to multimedia patient records, and to enable remote
consultation among participating state medical facilities.

Miscellaneous

MESSAGES:
Messages for participants of the forum can be left at the CERC
switchboard: (304) 293.7226
All messages will be posted outside the door to this room

PARKING:
Ignore the "parking decal required" signs- the WVU parking authority
has been notified not to ticket cars parked at the CERC facility

ASSISTANCE:
For help or assistance at any time, contact the seminar support staff
(red ribbons)

LUNCH:
Will be served on the fourth floor
There will be a box available for depositing the $10.00 to cover food
and beverage costs

24

Seminar Schedule 16 November

8.00 AM Seminar Logistics - Charlie Snyder

8:10 AM CERC Welcome - Dr. Ramana Reddy

8:20 AM CARDS Welcome - Bob Lencewlcz

8:30 AM Why Architectures? - Charlie SnyderlKurt Wallnau

9:15 AM Break

9:25 AM Senses of Architecture - Paul Kogut/Kurt Wallnau

10:35 AM Break

10:45 AM Software Architectures and Reuse- Wallnau/Kogut

12:00 AM Lunch - 4th Floor Antechamber

253

Seminar Schedule 16 November - continued

1:00 PM Case Studies of Reuse Systems - Kogut

2:15 PM Break

2:25 PM CARDS use of Architectures - Nancy Solderitch

3:05 PM Break

3:15 PM Panel Session - Architectures in Practice
- T. Saunders, Mitre
- H. Polzer, Unisys
- S. Levine, CECOM
- F. Swartz, Air Force ASC/YTE

5:00 PM Summary and Closing Remarks

5:30 PM CERC Demonstrations and Tour

26

Architecture Forum Workshop - 17 November

Purpose:
"* Explore the current practice of software architectures and software re-use on actual projects

"* Explore current research into architecture as a means of implementing
reuse

Overview:

• Morning:
- Short presentations by practitioners and researchers on their current

work with architectures

* Afternoon:
- Working session to identify common problems In reuse

implementation and develop a common approach to solutions

27

Workshop Schedule 17 November

8:00 AM Transitioning from research to practice - T. Saunders, Mitre

8:30 AM Architecture as the framework for realizing the benefits of reuse
- W. Tracz, IBM

8:45 AM Abstraction and layering within software architectures
- M. Gerhardt, ESL

9.00 AM Overview of DISA Software Reuse Domain Analysis
- D. Gary, DISA

9:15 AM Software Architecture, Reuse, and Maintenance
- Jim Baldo, Unisys

9:30 AM Break

9:45 AM The Object-Connection-Update Architecture
- Charles Plinta, ACCEL

26

Workshop Schedule 17 November - Continued

10:00 AM PRISM software architecture - P. Valdez, ESC/ENS

10:15 AM NSA Unified INFOSEC Architecture (UIA) - B. Koehler, DIRNSA

10:30 AM SLV Mk3 shipboard C2 architecture - U. Olason, CelsiusTech
System

10:45 AM Architectures and the real world, based on the Army C2
common software program experience - S. Levine, Army

11.00 AM Break

11:15 AM Architectures In the CIS field -applying Christopher Alexander's

work - J. Bonine, Design Metrics Technology

11:30 AM 00-based architecture use at NUWC - S. Roodbeen, NUWC

11:45 AM Capturing domain knowledge at NTF - T. Gill, NFT/ENS

29

Workshop Schedule 17 November - Continued

12:00 PM STARS demo project architecture - G. Wickman, CECOM

12:15 PM The STARS Air Force Demo Project - K. Spicer, SWSC/SMX

12:30 PM Lunch - 4th Floor Antechamber

1:30 PM Working Groups

4:30 PM Working Group Report

5:00 PM Wrap-up

30

Proposed Working Groups and Topics - 17 November
WO 1: EvLhasllon UM Messuaineme of Archlclumrs
Sprocumme ssues, um cmi m cnpa mllsms b eveuee

* deslgn Istes what we me "* 'wdct.b4evr quales whlch can end should bemeaulw?

SW2: 16861mmAr•hlaciurm !Techologes
. what arme docurniaw sod emeigha ischologiss for sotartes achlisclurs?
. whm i he -m, nieglg - (e, Aeasly 1e1nd bat em.I tecMnMog)

WO 3: Softw•re ArahIeciuc amn Roemu
- whet does It mem for an archlieclure to be ruseble7
. whet is Ind for prodct-ln. aw•clteclules to amai a commerolsi ic monest

WO 4: Softwere Archimcrl mid S1mndards
. whet is meo .let • bet rctltcchirs andi open systms?
- what we soe of maclectum rs ddllmo, e.g., baluing cW" es~
S WO : Soitwere Arohiecham sMi Shutegic (broduct-ne) Poluing
Swhere In hme DoD shouMl arcliteclres be specoIe nisinaidme? Implennented? Whet

am me protlcons of varuous approache?
- how cma DOD erchitectureS, U speced, be used preserively In procurhng systems

31

Forum Evaluation Form

Please take a few minutes at the end of the forum to complete the evaluation
form provided in your handouts.

We need your comments to improve our seminars and ensure that their
contents are relevant and timely to the software reuse community.

Any comments, suggestions, or criticisms are solicited, either attach them to

the evaluation form or contact either:

Charlie Snyder, Forum Coordinator, (304) 363-1731, snyder@cards.com

or

Kurt Walinau, CARDS System Architect, (304) 363-1731, walinau@cards.com

32

---- -------

Dr. Reddy

Dr. Romana Reddy Is a Profemor of Computer Science and the Director of
the Concurrent Engineering Research Center (CERC) at the West Virginia
University. At CERC, Dr. Reddy leads the development Into enabling
technologies for concurrent engineering. He has achieved significant
research results in multimedis communications, constraint management,
uncertainty reduction, and knowledge-based systems.

34

34

Central Archive for Reusable
Defense Software

(CARDS)

Session I
Why Architectures?

16 November 1993

This pags haentonaiy left blar

36

IM IN IB 1

A A ~turei Comntinuatfion of DOrmt Work

fthltwcturlsi

37

A Natural Continuation of Current Work
Software Architecture is a *Vpc of consideraWl interest to practitioners and researchers in the academic,
governm1ent. and commercial softwaire areas.

Why?. Why now?9

What is the relevance to an organization trying to improve its softwar development capability?.

How does architecture reiats to the other software developmient improvement concepts of

Software Proess Improvemnent - SEI CMM
Total Quality Management
Metrics and Statistical Proicess Control
STARS Megprgrinin
Domain Analysis anid Domain Engineering
Ubruiy based Reuse

Objc-Oriented Analysis and Design

Many od the research topics and implementation efforts seem inevilably to lead to the study of software
archotectures. This seems to stem from the continual human endeavor ol always trying to generalize and
conceptualize forom a specific instance to a more general cas.

we believe ihat the current interest in software architectures represents the natiural evolution of the histor-
ical locus on changing software development from a craft to an engineering discipline.

38

Why do we neeod Software Architectures?

Ne* tmo
Issues

Nee for Adaptability DMIfcultles InRus
Ned orLog-iAved Systems koplemetifigRo

Why do we needSoftware Airchitectures?

There ame many covces at week leading research and implementation ef1am into considering architectures
asan am of majo paoff Mn software development Improvremnt Some mao ones, and their nimlcalions
are rated below:

"* Reuse of Analysis & Design - The higher level at which the artifacts awe reused, the greater the
payoff.

"* SystemaNaidware Issues- System performance and hamdwar capabilities often determine
the softwareds.g

"* Difficulties in Implementing Reus - Reuse of other than mninor code modules is very difficuti
because reuse is typically considered after system design
decisions have been made.

"* Need kwr long-lived systems - Systems must be enhanced as new lectiologies appear.
"* Need for adaptability.- Longer lived systems have to change to meet situations not

envisioned when they were developed
"* Increase emphasis on standards -Systems now nmus conform to various interface standards

and often development stanidards, that require interface to a
variety of existing COTS software.

"* Ute-cycle Maintenance Issues -Software systems that use COTS and open standardIs awe easie
to maintain than custom developed software.

"* Greater Cost Savings - Reuse and developing software using larg-scae existing
components promises to significantly reduce development cost.
Those savings have been historically difficult to achieve.

40

Why not before Now?

Dkwem Desin Approaches- Structured 0es@g9% 000

Clim argut-tiSoftware No Gukin9 Engkkwftg Discoipin

Lack of Steladards r n
Each Systorn Is Uniue wifeent Oai

Rtequires a Paradigm Shift
41

Why not before Now?
Architecture has just recenly become a focus of study by the reuse community. White a major reason for this just occuriuig is thO
Increased emphasis an reconizing patiams In domasin engineering and other reuse acttiviss, there are other forces ecoming lo inhibit
architecture engineering:
"* Diverce Design Approaches - The myriad of design methodologies inhibits a recognition of common structure. Arid

how can you reuse C++ classes insa structured design developed system?
"* Diverse Applications.- Practitioners consider each application domain as unique arid unable lo share with

other outside domains. Thug the real-time practitioners and the MIS community
continue to evolve in separate ways.

"* Divorce Languages - While code Incompatibllitie are obvious, many timses the choice of language dictates
the design In subtle ways. This is most obvious with Ci.. and ofherOO languages, but
Assenmbly Language also scopes the design choices available

"* Lack of Standarids - Standards define the bounarides and ledm on the design. Without standaids, there
am no litnit-every new system ias acomplete new challenge.

"* Lac* of Qualit Standards - Now can the choice be made between soversl designs and approaches without some
stndaid defining the quality ot the product. Sotware development Is just beginning
to have such a standaid.

"* No Guiding Engineering Disciplne- Software engineering lacks the theoretical bae" of other engineering disciplines, If i
cuffently more a craft.

"* companies have different goals - Considers a U fixed-price contract (FFP) vs. a cost plus fixed foe contract(CPFF).
There.i no incentive for the contractor to control software -Asia on the CPFF contract.
Government auditons often disallow coms savings measures on the FFP contract. in
all cases the benefits from controlling costs to the contractor are somewhat
nsbulous-the contrctor wants to win new business as the mape goal.

"* Requires a Paradigmi SM f- Just as with the concept of Software Process Improvement, reuse requires a major
change in organization for a company. Software now must be understood, made an
hem of capital investmient, and must be managed. Eut many managers come from
hardware or business areas and have no uriderstanding of or Interest in software
development. 4

1111111 oi

The Goal of the Seminar

To use architectural concepts, we must understandL.
"• the various meanings of software architecture
"* the current research in the field of architecture
"* current efforts in applying software architecture

These and other concepts will be explored during the
remainder of this seminar.

43

The Goal of the Seminar

"The remaining sessimw e i e w ae 9 rditec ures and the umetutness of the conoelpt fr k -
menting software reuse.

44

"Some Cautionary Thoughts Before Proceeding

Exercise: Define the concept "Game"

No matter what you try, you will define a conceptual
category which:

- Includes something which should be excluded
- excludes something which should be included

Intensional definitions do not work well with
abstract conceptual categories

45

Some Cautionary Thoughts Before Proceeding

This example lktshatest an old itdk phiosophy prmts play on students-selting up defirniions only to
knock them down again. As it turns out, there are ound reasons why this ukkWorWs where farly abstract
concepts are concerned, as revealed by researchers in cognitive psychology.

The bottom line is that understanding what forms a cognitive category is no mean leal.

References

George Lakoff. Woman Fire and DoonoemL Thkin What Catragaem Raveal Abon Thi Mind University
of Chicago Press. 1991. ISBN 0-226-46803-8.

46

Architecture as a Conceptual Category

Categories are formed from experience

rag•ingv language system engineer

acquisition• . iso s ludMOREs

tool buildere i

4?

Architecture as a Conceptual Category

Given tht we form concephmi categorie based upon ou' own expeneces (we can as•n thi prp
silin fortie puxposee of the seminar, oven though this theory is by no means universally held as~u h
reveeled'), it should nof be uiaptrsing that a numnber of ditterent perspecties on the topic ci software ar-
chitectures, and domainspc• i software architectures and reuse, have emerged.

auite apart from the natural tendency in tie research community to reward "innovative" and "unique" ap-
proaches (which tends to generate approaches which have commonality wel.conceawl beneath layer of

obscure tenminology), there is also a natural tendency to stress what is important in a categoey based upon
peonal experi es and pers l needs.

The chart ilustates a number o t colerent perspectives which cight ead to a number os literent islerpe-
tatiors about w t��otitutes tie most central concept in the architecture category. Naturally no attempt
has been made to ronempteallles or all l onSrpts r o r the architecture categ , nortis it p m-
pliod that one prspoectives orly nae m inter.e se d in one concept (that is whyat is ma inpied by most cntra l

member').

-- 4 -, h e rI

A Smattering of Software Arch itecture Definitions

orgaaidmliom siructuue of s ypistem ________________
or compomsed -iM Sid 61&U coimpets and connectors that Its" '

for suchiral pastwes -GaurialsliwJ

I'o'e'o theon i packaging of functions sad elca~ dicir In-
dunsas, fom (wughtetorfces, and conbo to implement appllcatnsm

=uu) and rationale - lP% ioN

(ub levdwd dsrpton faelm ge type of gofiware fmadmismib1 struchor al adihut of a
gpkm sohnin systan:

-fusctioad roleof nmior components -partitioning into compomubd
-4nterruistiom lop aed In as applicati on ar. -low of dabe and contro
outed banguag --critical datin and dmioghiput
-precise comendies for automated reamingt - Wy u/sAnd spotocols
-Ubrmde of prototype components wo ith ecut. -allocation' d soltware to hardware
"ae specifications Sounders
-poingram synthiess capablility to produce opti- \
mindi code________________________
-a constraint system for reasoning aboet coebs. - fivnewj for Wclo. and physical partitioning
tency -semantic model of coonunmolcation and cooperation
-deegn records that link requirensafta to design -layering capabilty to add algoridhinc functionality

decidwo -an top or' the Framework
Lo~wry CominoneidGerbrdt

A Smattering of Software Architecture Definitions
In iniesdcof aim, hwever, wecan fndcomfort in definitions. There are a nmirber of delnirtions of software
archilecture Woundh the fltefaiture (IhiB list is not mean to be complete). The definitions usually refliect the
perspeclive of the author (e.g. Lowry has an AJ perspective). Note that in some cass a single author will
have several different Isenses! of the Wem~ Perry and Wolf, for example:

We use Pre tern Wadrltecture 'to Invoke notions of abstraction, of standards, of formei training
(of software archiects), and of sf~e."

References.

"* IEEE Sid 610.12 - IEEE Standard Glossary of Software Engineering Terminology. Dec. 1990

"* Gartan, Shaw - 'An Introduction to Software Archtecture to appear in Advances in Software Eng.
and Knowledge Eng.. vol.1 1993

*Peny, Wolf - Foundations for the Study of Software Architecture" ACM SIOSOFT SEN, Oct. 1992

* Braun - 'DSSAs: Appoaches to Specifying and Using Architectures" STARS 92, Dec. 1992

* Peterson - 'Comning to Terms with Softwar Reuse Terminology: a Model-Based Approach" ACM
SIGSOFT SEN April 1991

* Saunders, Horowitz, Mleziva -"A Now Process for Acquiring Software Architecturer MITRE TR

*Commons, Gerhardt - 'A Model for Analyzing Megaprogranimiing. Reuse, and Domain Specific Soft-
ware Architectures' TRI-Ada. Sept. 1993

*Lowry - "Software Engineering in the Twenty-First C~entury A] Magazine, Fall 1992
50

CARDS Context

DoDReseVision and &Strae

Domain Specific Reuse DS TR

Process Driven Reuse E

Architecture-Centric Investment

Interconnected Reuse Libraries Software Reuse Initiative

ASSET [1~] DSRS

CARDS Context

Th. CARDS program Is one menber of a larger DoD Soltwar Reuse lititatie The other mnwTer pro.
graris k~clude the DISACIM software rems progrm. and tie STARSIASSET program. These thse pro.
gramis provide copraie con~lemaritary cowerage ol goe field ol softwaire reuse to help s'ansieion the
techrklues arid techniologies of reie lifto practice.

Each od the prcgramui are guided by the DoD Software Reuse Vtision arid Strategy. The four fundamental
principles of the Vision and Strategy are listed on the left of the slide.

The CARDS program is interested in evakilusl and Mnarniinn reusetcnlge which bring tOgeter
the concepts of software architeabure, donisiin-spedlic reuse and reuse liraries. As wil be seen ma later
presentationi (Sessio V). CARDS is pwrsuirg an advanced Neviokwg approach to fuse these concepts:
our tirary technology is based on knowledgerepresentatlori formaismns which help us representl software
architectures anid prvide automated reus assislaince based on architecture models and a library of soft.
ware componaim

This is onie reaso why CARDS is, so actiey kInerested in the state of research and the state of practice
in tie field of software architecture.

S2

The Topic Transcends Technology

Standardization Issues Business Issues

Architectures

000000- Practice

Procurement Issues Reuse Issues

53

The Topic Transcends Technology

The conveience of buskness. poicy, and tchnology must be a consideration, as wel as diftereniating
arcditecture Wtogy from reuse tholWy. CARDS, to be suocestsL. needs to have a sufficendy
broad technical fonxdation to express the trends of architecture and domain-speciic architecture fmethd
and tecinologin i order to help gqlde the Iormulation of businesm and ac~ftion models.

54

P1 IN IN i I I I I I O

CARDS Cross Section of Ideas

-.- ' - •

Logistc Center Commercial Tool Industrial R&D
Providers

'• 6-2 6364

CARDS Cross Section of Ideas

Good ideas on the topic of software architecture arm not emerging only from research progrens. In a
sense, the image of a technology ppeline is naocuate-a beoter Inage might be a senes of technology
spmiders:

"* basic research: theory, concepts, taxonomies of architectures.
"* applied research: experimental, prool-of-concept technologies

* advanced echnology demnonstrations: demonstrations of scale-ability
"* ongoing development programs: transition issues
"* logistics and support programs: retro-tming, reverse engineering, integration and test

The motivation for this seninar. and especially the follow-up wodeshop, is to help the CARDS program to
cut-across these boundaries. to identify a broad cross-secton of ideas on software architectures. In turn.
CARDS hopes to use Otis knowledge to help accelerate the transition of good ideas into practice, as well
as provide feedback to research and development efforts into the perspectives of practicing engineers.

- - - - - - - - - - - - -

rSO a

Madow -SUSIM V-MI-n
twEmM ______

cotb 65M2 1MOdLZ jelddf _tdLMPle

mfd~

* ~~~~Session IV otx etn
* eso I iigacneta ctgr o otaeacietr

.. Seso......eiz. esonI noa odgmde fsfwaeaciecue nexenin urlomino idsof softaeacietrsadacietv- es
I I IsysteFI

* Ssson V:A sineyofarchietr-ae es ytm

..esin..A.hrt.e..w.fwhtCA DS......dinreaiv.o otwr
m~UtectuE

*R Seso A pane dicsinoLtepaacmcobrm dotn otae rhtcue
in he oD-hic KAhpeliy i eel neetntsus n gieitretn sisos

Tomrro, o coise isa wrksop her e ecnctneth susonadcotnetoecag

id acct -L A N

. pravif

Central Archive for Reusable
Defense Software

(CARDS)

Session II
Senses of Architecture:
Building the Category

16 November 1993

"rA-____ ____ ______

so
- --- - - --- ---

--- --- --I I--------i- -

Roadmap for this Session
.Arehife-turee Muffi-Die ~innar vma

.or Manufacture Perspective -. a- : c ptm and autnual
* ""r " WM ~ab~

Engineering Perspective

Architecture Perspective n~ a Pon
• design p@mWn m wid ye

Software Architecture Overview

Scientific Foundation - 1 i i , ceasptio

Engineering Application • ains nd mWl cft n modls
m• elneewtng and prOdecion teahnkques

Considerations In Practice :Policy Ilsues
..economic Issues

Roadmap for this Session
Our approach is to tWle two lads on lhe subject.

Fust we examine urchitecture from a broader perspective, spping outside of the comnputer sene" dis-
cpline. The oc" of teldng a mui-disciplinary perspective to starl with (imied as it is) is to establish
some reasonable analogies as a basis for further elaborating the characteristics of the emerging discipline
of software architecture and engineering. We look at three perspectives:

1) Manufacture - how do architectures relate to the production discipline.

2) Engineeding - how do architectures relate to engineering, i.e., problem-solving disciplines

3) Design - how do architectures relae to the design, i.e.. creativity, discipines

We take thes perspectives since so much of te discussions about software engineering are biased by
poim of view related to these perspectives (Miow to put the engineering in software e•nineeing:, how to
suppout reuse of designs," we need more engineering and less creativlty, 'component tactouies," c.)

Alter establishing our analogy besis, we provide a high-level overview of some of the current approaches
directly relevant to sofware architectures. Again, we take three perspectives:

1) Scientific - the study of software architectures in their own right

2) Engineering - the development of product models and production models based on architecture

3) Transition to practice - the organizational, economic and policy considerations

62

The Industrial Revolution

Cottag Imlustiy M uadeturing Process

make parts from mw materia build stmndard n tenchangeable parts

hand fit to assmbiM gauge conformance, wit spec t!!n In

test 7 & r, x Faswibl*int sta nda rd p ýmduct

Industrial Revolution
Beforethe' ndsria revolution, the production of goods and seivices was donse in cottage fnutries where
abor was cheap and mraterials were expenisive. (notice that m software labor is expenisive and maelenals

-cowqute resources-ar now cheap. In a cottage hidustry each part was nude from raw miaterials (soft-
were analog - musou code), and hanid fit to an msentily (uniqu software desiu). Then test" was
dons and parts wotld be lurther ac~usled (wmtegration).

In the late 1 700's the US Government locked forea better way to mantifacture, rifles. The idea was to build
standard interchangeable parts which coul be assenbled int a rife (a domnain specific architectur). The
key facilitating idea (-1820) was that a measurement procedurve and tocogaug was used to detemnne
coriofmunce to a specificatoio within a certain toleranice (qualiication process). It lock 24 years for thi
aVmoiy practice to be adopted for commercia products (teclwolog transiton)

--------- ------------

Build to Order

generic pars with
constuained set ot
"IntwconnecltMos
materials, end sizes

ascustomize

Plumbing Systems

65

Build to Order
Ideas from mn acturng processe were then later adapced to'build to~de prodtucts Ike pling sys-

teom (which am more "1e software systems). In "bud to order" there are genelc pasts such as valves and
pipe segments which have knifed ways of interconnecting, are made of only certain kinds of rmaterals. and
are avalbe in only a cetain set of sondard •i•es.

The Imbd to ordes prpecie most closely resembles comPonent-bmed programnrng-i.e., progmcn-
ruing with higher-level abshiftosbuldng blodc. The ARPNProoTech project provides one view of this
kind of prog•aming model, as relected in some of the focus ProloTech has on modl interconnection
laguages (ML) and tomrnlsn (MIF). The idea of MIFs is to pvide some sadr interconnection
mechanism s away for component to be assembled. Note that the msparation dooordinallon from form
is not a urtmersaly-held prereqtile for component-based progmrnming.

What is most ineresting in Ons discussion is that uild to o~der need not require an ar'ctiitecte-there
are some who believe that for speooc plicaon areas in software, e.g., inonnmtion management sys-
tens, tht tild-to-order based on lage component chuks may be more appropriate than a refine-ae
design solutim.

The idea of seplarating the interconnection and coordination mecharims from the component (or the
Iobnn) is an idea which wil recr later.

References
Com. "PhlnWg mat S IndmtiW RPvofuMIn. EEE Sommc Nov- 1990

PuatJO, j.. SOftwa, Bus Orgardzuio: Refmnas Modal and Canpafitofl o Two Exlmg SyMem. ARPA Modue lWroorrm.o FPoimlism
Wow"ng Group Tdifnical Note Sodas. TN No. s. Novurlmr 1991.

Ni*larsraaz 0.. Carvmaa Ortenlod B•dWM DMvWePlln*M Cawwnesion ot ta ACM, Vo 35. NO. 9 SOP. 1992.

66

Roadmap tar this Session

M~nufacture Pespective I~ I'l ar sum

or Engineering Perspective _nnw"O. in abodel

1h prob results hog apui

Arcitcure Perspective 21:d11g dscIn

Sofwar deshlwgne Overwem nd y

gmdflm~m desolptitn
Scientific Foundation sbmdnda w An1yhls

Engineering Application absUM and couimut mo0dels
"enInseviag end production WachnImes

Considerations In Practice :- - -1bdSUUOIISm

s conomic Issues

zo,

The pqp h ftenonuily left blarik

Engineering Design

Designg

Enineing Design
thninvtie(vnual vninoaiedshignreoeruie.Ruiedsg rnouvesovngf-

References:Dsig

Shaw. M. "Prospects for an Engineering Discipline of Software* IEEE Software November 1990

70

Design Reuse in Chemical Engineering

Design Reuse in Chemical Engineering
The three main faciltakem of design reuse in chen~c engineering am. handbooks. pe*;hed promses
(archiitectures), and corpoate design standards. Themsem all based on ernpiical aleevalions, scientific
theoey, and econornics. We will look at these three feoditators in mor detail.

72

Handbooks

Chemical Engineering Software Engineering
"* One main handbook for the entire . . Fragmented set of hand-

filow books
"* Comprehensive coverage of unit -*P. Incomplete coverage of comn-

operations ponents/algorithms
"* Patterns of unit operations '4ow* Few patterns
"* numerous heuristics * sme heuristics

* over 100 authors '* One or a few authors
* emphasis on economics -oop*. processing/memory
* common language - math and 4 . proliferation of languages

chemistry and design notations - Ada,
C, Ci.", Booch...

P3

Handbooks
The one main chemical engineering hand~book haes more breadth anid depth than existing software
enineering handboolis (~becaus the fieldis more matur). Unit operatlions (e.g. a heat exchanger, a
distillation column) are the basic components In chemical engineering. A category of unit operations (e.g.
heat exchangers) forms a horizontal domain (analogots to search algorithms or DBMSs in software).
Most but not all, softar engineering handbookfs deal with small grained compionentsalgorithms (vs.
larg grained components; lie DBMUs) that wre at a lowrer level of abstraction than unit operations.

Chemical engineering handbooks givo patterns of how to put unit operations together in a process (see
next slide). This is an imiportant distinction. Software engineering is just beginning to capture and organize
a wide range of information about pattemns. Patterns in software may be more diffictift to capture and
organize.

It is interesting to note that the amoMn of expertise needed for a comprehensive chemical engineiering
handbook makes a large rnumber of authors necessary. Also, the chenm. eng. handbook emphasizes
economics, whereas many software eng. handbooks only address processinglmemory resources.

References:
Perry. dhion theinical Engtneer HanboWr S1head. 1973
Kmnhf. 'rhe Ar of Conipier Prograrrinkg* 10011 I-ffi11973

Boockt Software Components with AcW 1987

Sedgewick 'Algonthinis in C" 1990 and AVgOflMM in C.4 1962
owrms iD)*"ning Ueer Interfaese for SOPfwars1988
oet~xo ,Repols 0on..., updaetd periodcally
Garr. Feagenbaumn. Coten 'fe Harntooft of Anhldu Intellience' vois. W.V 1981-1989 74

Patern -Example: Liquid Extictlon Systems

coIwan E:#,wcv A

SSettler 3 f Set~tler I Settler

solso-it

Sete 2i Sol/ier
Kn

UC Settler a~Stlr
aa

Pattens Setam le: LIqdEx co S ystems3a 8

This slide shows a good example of what is meant by patterns of urit operationis (components) tha are
conitainted in the chan, eng. handbitook (right "id of slide is actually the top). A discussion of heoistic andJ
desig trade-oftf related to these paftemrs is also loW idn the handbook.

Reference: Perry, Chilton. 'Chen*cu Engir*eeu Handbook, 51h ed. 1973

76

PublishedPrcse

* Generic Industrial processes (arcitct os) are published In:
. handbooks
. Journals
. patents

*Procemss Include:
. constraints on choice/placement of unit operations
. maeil flows
. control: temperature, pressure, timing...

* Design steps:
. refine generic process based on:

- production rates
- product and raw material specifications

- do detailed design of unit operations
- evaluate plant design by sImulatIon/calculate return on Investment 7?

rzLZu
Published Processes

In chant 00g., kidimois) processes for producing chemnical prtiducts are pubished more freqluently and in
more detail then in software engineenring (note IndustMa - many publisehed s"atm designs in softwae
eng. ar research prototypes). Thereis a widely known published catalog of processes that covers the
entire spectrumn of chernical process industries (I know of no equivalent for software eng. - there arebos
tha look at generic designs of one specific application area - e.g. comnpilers). Patenting a detailed chem.
eng. proessm common" practice

Notice the analogy of what a published chemn. eng. processes includes tro what is included in a software
archiecture (e.g. constraints on choice/pIacemeont of comnponents. data tfiw, and control informiaton
(control is a maijor subfield of cherri eng.). See next slide for an example of a published process. Also
notice the analogy of refiring a gerieric designtarchitecture based on Meailed requirements. This
emnphasizes the engineering mmindset of comnposing solutions from past experience. Notice the lack of
emphasis on calculating the return on investmntM for a software engineering design. Evaluating the
comnposed systemn before it is built is also piari of the engineering rnindset.

Reference: Shrove, Brink 'Chmicai Process Industries!, 4th ed. 1977

goal "== - - -- ----- - ---------- 1111 11111nM E,178

Published Process - Example: Alcohol Distillation

ZX7741%CsH5OH 18.5%}

•HZ 74.:% ---ý48 Condnse

CHSOH 960% Benzene
H20 4.0% makeup Steam {2CH 50H 96.0%

S • ._ o 4.0%/
Steam Aqueous_ Df•O D

-- alcohol
100% C21-1sOH

Separator Equilibrium
"Top layer Bottom layer Steam

Vol. % Overhead 84.0 16.0
Compositions

C2 H5OH 14.5% 53.0 %
C6 H6 84.5 11.0
H2 0 1.0 56.0

..II .L I I III
Published Process - Example: Alcohol Distillation

Notice the choice and ki• miedions (architectre) of unit operations (comnponsW ypeS), the material
flow (deta flow). eid the to. •akuns (control information). Notice that each unit operation s tnmted es a
black box (except ti separaw) so there is flexiblity in choosing the wize and exact teral dwe for the
actual equoment (W remwat. conponenws).

References: Perry, Chia "Chernical Engineers' HandbooW 5th ed. 1973

8O

Corporute Design Standards

"* Management commitment to de ruse

"• Captures and organizes experience/knowledge of corporate engineers
"* Design standards include:

- specific design equations
. heuristics for:

- design criteria for equipment "Avoid thin wall tubes"
- parameter estimation

- example calculations

SI

Corporate Design Standards

Thew chem. eng. corporate design standards go beyond handbooi in helping to design utnt operations
(horizontal domains). These standards are used along with published processes (architectures) which we
often supplemented by propretary deails. Can you imagine a set of corporate standard software
components used in all systems across all application domains?

52

How Does This Apply to Software Architecture?

"* How Is community knowledge represented and shared?
"* What are the architectures .(product models)?

"* What are the design processes?
"* How does management demonstrate commitment to design muse?

64

T WaI I

Roadmap for this Session
Architecture: MutlDWiscnliMr Oivervew

Manufacture Perspective .J : cfo pen m ao

Engineering Perspective 'n • njn
•lmnwledge in In1ln1e1ng models

-s" Architecture Perspective d* • nd C,•,exll bounds on cefvy
design p3m.s raid "sle"

SoftLware Architecture: Overvie

Scientfic Foundation • 1 -km% eessid, msArplynabstraction &Wand yvsla

Engineering Application • bhI sand f onwCI modelsE e engAneedolg en production WeN ques

Considerations In Practice •* oAd'ets
•cnlc Issues

85

"nW pap kw*oa left bIam

86

Obvious Analogies

Blueprints, etc.: Design Representations:
*plan, elevation, 6 multiple views

perspectiv models for differentiated roles
archtecg isan , (customer, system engineer,
shop plans software engineer)

Architecture styles: Architectre styles:
*Romanesque, * Distributed

"* Gothic - Client/Server
"* Victorian * Layered

Constraints: Constraints:
"* circulation patterns * timing and schedules
* coustics * reliabilty and fault tolerance
"* air flow *prformance and throughput
*lighting... * aamanagement and distribution

Obvious Analogies
Much has been made of the analogies between software architecture and clanica (or 'bildirg) architoc-
turn. Some obvious analWMe have been made between design notations used by softwwo architects and
building architects: otlher analogies have been drawn between architecture Idioms and recurring patterns
of software designs.
However, these analogies are of limited utulty. For example, any discipline requiring problem solving where
the information space relevant ID the successful solution exceeds human shi-or-emi memory will involve
specialized notalions. This is aiso the cms where multiple parties are involved in problem solng and pro-
duction, in which case numerous specialize notations may be used.
Less obvious analogies can be dram between thue classca architecture and computer systems which ame
more revealing. For examrple, after centuries af practice, a few key families of constraints haow emerged
in the design of buildings, eog.. acoustics, circulation Bow. Thes e- areas of potential isfltW between
a design problem and its solution (in Ott cme, a building). Similauly. in computer systems a numiber of famn-
ilies of constraints have likwise emerged-fault tolerance, security and human-mnachine interlace ergo-
nomics, for example, which can resuit in isits between a systm and its requirements.
The real benefits of understanding classical architecture as a precursor to studying software architecture
is the relationship between classical architecture and a theory of design.

References:
Chr~luophr Alxanoder. Ne. .tmStIR lFmIwvwd UIw"t PrUma 1964. ISBN 0-474-627504

DOW"yi Pow1,. WON. L. Toundob flort StuB~dy of 5011m Archeolbum.'SclWW E ungfong Nasa Vol.17 No.4. Oa 1992.

Zaowwa. J.. 'A Farunww for hdomuflon Sym~n rchftwamt. IBM Suw~ms Journal Vol 26. No. 3.1967.

118

Classicalo% ArhtLu Perspctiv on Design

Queues foolgg ft r ggM of desig

d akf mwwmlaod.d#w

7he avwee dewm m ahehiw
hbdmmatbn he hw.ne am, ownett @
mWuLWX-am Amoowd by mfru~qml

ng omW@% and &hO~kAM iandon
-owb hbvi mf! Mbs Axw mM ,-- f

doontp hip inOw&ge omto -b offth enmb

A 11pil design P OWNefv: rujpb*nU AtUeM ae SWe9whft PWe keeewm"
.~~ hIR quen(y, inn~l* wd dWiy. OinW

menon fte reiphumnwt I ''w ame dwoW a# OwNow, sadd

dwauli fW1 fm N ho aw dnwegd

A-
Classical Architecture Perspective on Design

Reading an VAOesW Of the deseg probleM ~t~ Cftlsophr Alexander is, addressing. is e readin an
intreduclion to sowr~sesdesign textbook Yet thee are problemns which dassica aichitetue has
been grappling with for cetr~ies.

Reference: Alexander. C., Notes an the Sonthesi of Prim. pp. 2-4

90

Why Do ArMhlcts intospect on the Design Process?
muml Hý Heed anidoforghmrd

Perhaps classical architecture repres."Is the purest example of a discipline
for controlling the creative design proceft

Architecture Is conside red an artistic discplne In addition to being an
engineering discipline

What constraints are Imposed on the urge for spurious areation?
91

WyDo Architects Introspect on the Design Proc~ess?
Pulic inboepeCtaon is an imporlant panl of any mature profssaional discipline: It is what Itw4* it possible
for a coninilty of practitioners, to evokve the suat od practice, within a discipline.

The discipline of classical (or 'bilding) archftectie has a vast body of Itlerature which dewm Mh toe na-
ture of design. While other disciplnes attend to tie stud of fth design process, it is usually wv thn conv-
text of desig methods-procedures and notations for representing and Wansfomring the wwi' aroducts of
problem solving. Classical architecture addresses these syntadid aspects; of design, too. Ow the disci-
pline also has a rich history of design theory bordering on mysticism and certainly well kil ire realms of
meta-physics.

This is probe*blyte because the elemnent of aesthetics; Plays a more "der role in classica architecture
tha in engineering. That is, while one may attan a Zen-Ike appreciation for thle austere wodftis of a DC
mnotor, such devises are not typically afforded apprecalion as "woris of aat This is cer*:t4il the case
in classical architecture, where a teson exists between t1he need to engineer a solution to th. basic hu-
man need for shelter, while simultaneously satisfying additional craving for arlistic creatio arindidviduul
distinction and recognitio which accoimpanies classical architectur.

Architects study design becaus their problems are Complex and If1-formed, their solutions mi*W satisfy real
needs and because there is a tendency for designers to engage in fals creativity. non-esser~tl Creation
and egotistical design-all of which interfere with achieving Useful solutions.

12

Mhe Nature of Design: The ContextlFormn Ensemble

A desig probe. comds ofa two-
entsemble: a problem (conlexo,

Form end context we htlepambie
oand - entery.

*~~~~ Reue frqenl Imane som todaptationo
* ~ ~ ~ ~ ~~ O "Fom, of1 deal nW depends upncmpe cotx neacnn

recordstdeign ramtioalecmptiilty

"epi"fTh onatr ot Dersign: Th onet/om neml
thesig desin prriem

nekalul~~~~~~~~ seeto slemcum ywihw iv erec eweenat mirn an its o catx
(Hos tois calle wpply aatedOMNess'). htetr? prbe sthtw e igS

In ofwar ad sstmswetypcay rfe toth coter a te rqcreatenfors for the tomrs the d
"deosig.Te ofjmli otextut smlees roilrusne it doneysigsns o nsembl biettrmtan does the"
"tRuer frequoemnts. thIhfrmolist soment bo~th emsae mv
"Thermd" of a~~ndpnsu complexe "ctxiomreml a emobveous enogbtei. ructialonsudt
"res Apaind sof thaefom(architectures twl hwsaer mnake sanset ont forms:ext

Se deign reseAADG based,.. on dattca eiemegnt rrestncorddeingofontx htoationae

WeThodne thatuwhie the iDeasign cmlThe Contextil orm e nsemble raw ra elo es.h
pracofthce msotwardreadsstemg ad uesuidesais adehised asmeingek rsable depa the fdac that thew contex
smlsmtigwhich prdcdch onsist nfotnhdd has benent dade a homas inseverabeen forplmenally aspceted tof
bhedsgan with. rn

Rnefaperencespemnaynb f otrir s nioien n ilgia raim
~alud. selection is the mechanim by wa, id weahee 6ere-f45etenafomadit otx

(thi fitis clledwelladapednes!4

Patterns: A System for Achieving Form/Context Fit
~affna:context-i~conffiotinig torces-*con figuration

theolo weis " On~osevas

bios,,,~~~ho ti is t m o pubi odiqua

How does this apply to Software Architecture?

Gamma: Handbook of Showv Heterogeneous Lane: Doariln-speclflc
00 m~cro arc hiectures architecture idioms design rules

Patterns: A System for Achieving Form/Context Fit
haitoi3 nc be wprislng that alefatt m i'sold be an Intportantlcrcnesp inardliecwir, as Ut ki s lsmen tyreqae
IN 1001111g. codli1ng laiceedge and, slitbualely, rmus. In to architectural gemse at Wea Irarm Awendees pointc ovivew.
a pattern is a ccnfigumaaon cd loms which brig conloling P intos equilirium. Thes noln of patior rps up repeatedly
in O the sdycsof dware architectur:

GWing. eL al.. 11ve identflied mowuing pafttem in cboecricenmed system. which he rafers to as *mWW archileckerse.
The" amedesign abetreclocns, notocods. which are ussddwurngdafect-wiseeteddeelig, telM specific needs wltli specific

Lamg misc earched for whtm amnount to "patiesms,* or, what he referred to as design miss within a design space fic-Iea,
wsto unewer design nale which sepreas structual soklutons (Ise., 9 mplsennation decisions) to intralclnsr, wic

licnalhperfomance dinnsnouln (e.g.. rsspouse *ine vs. IPC means). These design wise are, in oflact, patterns.

Finally. Shae end Gerlan have uncwsrsd dessigndome which hav become widely useid. Mhile these 'I'im may be re-
lised lo style, (and may be style), when to Idome -ae conposed they begin to lock -ore WApstlern..

What is significant inall of this is the search for and dlooursferdtaln of buding blockc abstrectlons, or design elements, that
work In practic..

Garrv E.. Hegi A.. Jo*reon. FL. Vteldss. L. Oessi Paserm'Abmucon mai Asia et Obl.0 fleasd DseW re4 lid*W PWr. Cousect
Efth Oswmwk a TahgenL. w4.. 10725 N. Do Ann BUG. Cu4lmnhro. CA 055012000
0014 P.. Oblsa.-Orlseaf PW&W. COMM6001ots~ of f ACKd Vol, 35. No. 9. Sepmnts 1992.
Alexandr.. Qm - Wy.fl~~ OMMr LUnlvey Prssm ISB 0-19.502402-8
Davi Garlen. Shaw. t. *An warocuaftc 10 emwsse inftarau.* to wowa in Amaleans In Sofwrew Engknssrn mard Knowledge Englnesitn
VolI., 19M. WoMl Sinehiaf PzuIehk Carwary'
LA=.. T. G.. SiAt4lnii Sotat.~ AMtvMpdura ~m l~nsw n u CMLVAIi-90-TR-l6. CMU. PMgoxrgk PA.

Architectural S4yle
Style refers to a quality of18 solution which brings
all of the design elements In an ensemble into
a cohemnt whole,

Style = Design Elements.+ Organizing Principles

some slyys hav s s found In patterns. Ifwunl dependaen upon
names: Wwancewa0ys Of~l Sef elwMnent matedals

9011ft #1-4 - vauftedamches

P i spwin wood -+ light, simple
posftor puw-tb'Iatlon MAthetiols and socia factomi tooi

How does this apply to software arhitecture?
"* Ca'n software architecture be expressed with a small, standard set of
design elements? Are the design elements peculiar to a style?

"* Can a software architecture have a ubiquitous styl?
97

Architectural Style
There is a higher-level organizing principle than patterns and pattern languages called architectural styie
(although avid followers of Alexander might claim that pattern languages embody thits organizing principle,
and that the only *style that matters, is Vattems that lver).

Some of the styles we refer to are known even to novices to architecture: the Gothicstyle, the Post-Modem
"stle th AMericn Prairie stye, etc. What constitutes a style is a combination of design elements and the
manner in which the elements are related to each other. Some of the factors in selecting organizing prin-
ciples are effected by the materials present in the design elements. For example, the use of stone or ma-
sonry leads to a very different organizational approach to relating, say, an entrance way to a large room,
then will be the case if steel or wood are used.

What makes a style a style, of course. is that it represents a coherence among the design elements-this
is what is meant by organizing principles. That is, we would niot expect to see roman columns in front of
an Amiercan Prairie home which uses reflective glas windows in steel frames.

This 'definition" of style leads to a different applicability of style lo software architectures than usually con-
sidered. That is. style in software architectures would relate more to the set of design elements used, and
the manner in which those elements are related-not related in part, but related in the entire ensemble.
That is, software architectural style-to be style-nm1st descnbe system-wide organizational principles. Ex-
anmples will be found in structural mcdeling and Genesis.

98

Roadmap for this Session
Architecture: MultiDbMi~n=iavOeve

Manufacture Perspective w f w Ed awwwuon

Engineering Perspective =. n

Architecture Perspective ~ and n cret"t
SdeSign ptims Bnd "1yw

Software Ahitctum: Overview

Wrmetind HMffOu~m descrponw- Scientific Foundation • nid. mOW anulysp

Engineering Application O • * hid Conlcr.t mUodlfs
.nglneedng and poawdeco wch~qnkp

Considerations In Practice •O" po"ic osldsUans
-xm~l Isses I

Thk peg khtnfondy lef blnk

100

M O R ---- -- - ---- - -- --- - --

Penyy end Waif: Context of Architecture

Require enwrts : tfcrtrsto

*descr~offon and
*dosign eleMonSK'Architecture ewvomaon enients ayi

" ~ ~ ~ ~ ~ ~ ~ ~ ~~lr andnsanonnsAnaatos O M

"* mloduadtohn Snd detailed InterlAcs
Design *algorJhms and daMtAWpe

Implementation - ,epiessatmoon and encoding

Perry and Wolf: Context of Architecture
A good piace to start in Lnderstaniding software architecture is the Foundations paper by Dewayne Perry
and A. Wolf. We start here because Ponry and Wolf make the strongest case for buildinig on the analogy
of classical architecture in the stud of software architecture, particularly as concerned with the notion of
architectural style.
The chart ilustrates a starting point in the discussions: that software architecture is both a discipline of de-
sign, and also a representation of design. Specifically, software architecture as ilustrated is a kind of high-
level design. The key points of the Perry/Wolf paper are:

"* architectur'e is a discipline with standards, codified styes; and education
"* arChilecture Captures unportant high-level concepts in a swornM Which mnust be preserved.

and which make global assertions about the system
"* multiple views are needed to express an architecture
"* strong analogies are made between the notions of 'style" in software and classical

archletued
References

Dewcyne E. Perny, Wolf, A., Foundations for the Study of Software Architecture," ACM SIOSOFT Soft-
ware Engineering Notes, Vol. 17, No. 4, October 1992, pp. 40-52.

102

Peyand Wolf: Elements, Form,, Radonale and Views

Architecture=

Elements IbPW

"* Prces mentsgn
"* diMiS~l obIwM~ lSw~~

Fonm

s* It~fSS. sPOW

Rationale
Cfor 111111'11 410oftn?

and to Ceg
o functionaftionlwtloaml Dat View

Perr and Wolf: Elements, Form, Rationale and Views
An architecture is Mnr~se of elemens, form and rational.

Elements form the basis 1w various views: process, data and connectors. The Ifigures Illustrate two sepa-
rate voews for a canonical cornpiler- the connector view is implicit '.3 proceduralparameter connector view).
Alternative process and data views emerge it alternative connector strategies are determined.

The notion of form parallels that of the discussion earlier in the classical architecture discipline. Form is
concerned with constraints on the use and arrangement of various design elements. We should note that
Perry and Wolf admit to somne ambiguity between style and "design" decisions, Indicating that there is
some gray area between architecture style, architecture and design.

Note that rationale a also included. This reklaes strongly to the noionl of architectur as a complete en-
semnble of context and form. In this case, additionral rationale Ikst are made between the form and its mr
detaldW realizatins in design.

104

Pe"r and Waif: Consftrints on and Nature of Style

*anduredstW materials
bet tarchitecturm

W e w an Mavrarstrhope tlrsK se m de VIY and

pdneift (arst- Engineein~~
curmay, etc.)Prn ils .

"dmath

Perry and Wolf: Constraints on and Nature of Style
One of the mos kImportant points of the Penfy/Wl concept conicerms the relationships between earhiec-
ture st" and matersias and engineering disciplines.
In the context of software arciecture, toe blowing analogy can be made:

"* style and materials: the selecton d a st" must take into account the Wends of components
which may be reused or fabricated. the languages used bo build and comrbne components,
properties of the execution environment (network speed. processor speed. etc.).

"* style and engineering principles: different computer science disciplines are Involved in the
use of different styles. A distributed and concurrent styl wiIl involve different principles than
a simpler cal/return style.

These consideuations form pad1 of the context for the form to be produced

106

Shaw and Garlan: Context of Architecture

< r- I own~: WOA ScWe ty

nxk-~a n absb patte1nw: WwWsialin, Irdnntlon hlang

.panmam: wuivol skucwtw
.wsuIamb systems

fomlsf branslatr ns mwafcWAmulas

Shaw and Garlan: Context of ArchiteCture
Shw anW Gadn wre closer ID the practic al aarNlctr In thei woik tfm th P"n and Wqlf paper.
MMthug Show and Gerlan shares I*e view of arcNlckmw ns hig-leve design, they also cosder the

study of am~hoecures to be a natura next-step in fth evolution of computr science abstactions.

A99ain, using fth metahvof a pattern. we can see a matein hsorical tren towads; the study of higher-
level abstractions for larger-scale systens.

Referencse

Show, M.. Larger Scale Syrsterm Require Higher Level Abetacftior &bh International Wodehop on Soft-
ware Specification and Design, May 1969.

108

-AI .___
Shaw and Garland: Taxonomy of Styles

Archklt re Style
(Component Connector Vocabulary, Topoogy, Senmantic Constraints)

Ind15e0 nt @ what Intuition does it capture?
OOIJonQntShI * what Is tihe ndarlylng structural modl?

i Oeompu Mioal model?
•mawaang mntsys~s whtm ar te propeni os em. ryle?

processes w**at am same cmmon exampes?
-* whatm same common speacimions?

20=octin In=ocation Descriptive Framework

&at postoy blacoard

/ ir~

__'_____~ LA ~ rine

Taxonomic Framework to

I MIA-

Shaw and Garland: Taxonomy of Styles
Lie Pery and WoNf, Shaw and Gartan define architecture in terms of constituent design elements and con-
straints on the elemet. The exact definition is a bit different.

In this case, the elements are components and connectors. descibed in som kiiorm-specific manner. The
particular idioms are represented as topologies of the componentilfnector vocaxuiary, along with con-
straints on how the topologies can be arranged.

Shaw and Gadta have classified a number of idioms, and describe their general properties, etc. using a
consistent descriptive framewarlL This taxonomy has emerged from case studies of actual systems. It is
the foundation for courses taught at CMU on the topic of architecture and software design. it has also been
widely published and distributed through technical literature and tutorials provided by Gartan and Shaw.

References

David Gartan, Shaw, M., An Introduction to Software Architecture," to appear in Advances in Software En-
gineering and Knowtedge Engineering, Volume I. World Scientific Publishing Company, 1993.

110

WOMMR.- U M8. 1. " 1 ...1011111 :.1..1 10• .>.:

Shaw and Garland: Heterogeneous Styles

Systems need not be designed to only one style

Impliit Invocation stye

ctIlnt'swrerstyle

-A-
Shaw and Garland: Heterogeneous Styles

It IS interstin tonoe thatGaian anid Shaw have obesivd tha syslemm do not usually ronss cioa singe.
,consistent idiom that is uised acivss an onhiue system. For example, they provide eamnpies in case skiies
of systems which, at one level of abstactio present one idiom, while a singl component wimothi tisdiom
is realized Itvough an entitely diflerent idim.

It is not dear whether Ois indicates the limits of the analogy made with traitona archNtedmue-ýconomiwg
the notion of style as a consislent. global property of a system. It may be OWa software systemrs are inher-
ently ¶ecrsiem in desig thwou* many levels of abstraction in which case stye couild be constrine
to anry onie aspect or view ci a system design.
References

David Gaelan. Shaw, M.,"An Inromduction to Softwae Architecture, oo appear in Actvanoces in Software En-
gineerfg and Krnwledlge Engineeing, Volume 1, World Scietil PLubliin Ciompany. 1993.

112

Shaw and Garland: Styles as Reference Models

legay deignre-lnferprewaton

legay deignof legacy designs

reference styes

113

IA-
Shaw and Garland: Styles as Reference Models

Anothe inhwslsing aspect of Oft wask iB the use of styles or Idioms as a way of exmnulin legay designs.
At least omne m study is pwevded which hisbates how a system can be viewed tram nx~*idipme dms and
how, each idaom reveas same dcharaceistc shout the system winder observation

The example Ilstrated is a nat"a language processing system voewed throug the Interpreter idiom and
the blackboard Idiom.

What is significant and worth notingisthatOthis lutaftes fthLeseftiness of architectural abstractions in fth
analysis and understanding of properties of sotare designs.
References

David Garlan, Shaw, M., -An Inbadduction to Software Akchitecture., to appear in Advances in Softwae En-
gineering and Knowledge Engkmeeing, Volume 1. World Scientific Pubtahing Ciompany. 1993.

~A u__
Gamma, etal.: Handbook o1 ObJect-Ordented Patterns

_____ ____weadwual S11ruwtwr be"avorai

Ob act *Abstralat AZf Chai of-

Diagrmm

COMM" : erpw0ft 11 ter -a

*IV~~I~sr -. Alt=-

Taxononlk Fwmmw*I~~ DesePf m Framwork

115

Gamma, et~al: Handbook of Object-Oriented Patterns
Other reseachers and PracKVIOne have adCOPted a lmilarapproach to Shaw arid Gaitan, but at a different
scale. For example. Othi cher! Illstrates a Iraensnof a laxtainomy ol Imicro architectures lound in object
oriented systems. The term micro architecture is used by Genirna (one of the authors of the handboo)
because the scale includes a configuration of objects and classes which would be combne with other
micro-architectures to create an application. I cnta, the kdamrs of Show and Gartan *teer larger

Note that ft is within the 00 Community that the largest direct use Of concepts from Christopher Alexander
are foun. This night be because the 00 conmmunity tends to be more avant guard, or It might be that the
argumnents; made by Alexander-that the desig elemnents of architecture must be closer to the physical
world-have a natural setting in object-oriented design, which espouses a similar principe of abstraction

With this we leave the science and philosophy of architecture behind, and examine some of the engineer-
ing factors-technology and prooess.

References

Gamma, E., Heim, R., Johnson. R., Vlissides, R., Design Patterns: Ahbsaction and Reuse of Object Ori-
ented Desigrr-unpublished paper. Contact Erich Gamma at Tafigent, Inc., 10725 N. De Amza Blvd., Cu-
pertino, CA 95014-2000

116

-A- ___-1-III ...

Roadmap for this Session
Architecture* Multi-Disciplinnr Overvie

Manufacture Perspective -b • u, n omlUen
lb " r-- ,P U M W a s e n u

Engineering Perspective : •omq ictpU

Architecture Perspective -b- • designd ucoirnen
• desin petems mid style"

Software Architectures Overvw

Scientific Foundation - :R clm 1Uo, deacwplon
•ubsmmotlo mid mieyui

rwr Engineering Application a cnn0 wo en
ms " alnm onulcedmilons

Considerations in Practice Pal - lmo cod ru

117scni Isue

Thic pap. henidaly left bteNk

lie

NO n 1 1eo 1 e w

Some Topics In Engineerng Application
*Architectural Style and Fairmalized Design Elements

. Style and Engineering Design

. Style and Automation
*Design-Procmss Generated Design Elements
* Module Interconnection Formalisms
* Evaluation of Architecture

Some Topics in Engineering Application
There are quit, a variety of topmcs The Illowing discussion touches, on only a few miportW itopics. Notably
absent orom the discussion are disausions on the relationships between wctittectural styles and design
mnethods. irmpact of software architectres on HISt-Cycle processes, relationship between structual versus
behavioral descriptionS in architecture, etc.

The topics which are addressed were selected: to amplify concepts introduced in the earlier discussions;
to introduice somne technology considerations which will be relevant in later discussions; and to provide ties
wherever possible to ongoing software engineering effots (both in theory and practice).

120

Arch fecture Style and the Engineering Design Process

prIzo

--- Style:

recfOnf smWI number Of elements,
x1WWida kmean of contr~llala bansber

"* japepaffon of nissilon (confWiroe,) from
bbIllljf fSae= Eand services (ojcs)[

" ACNera U o f n (ojc s) r~o abie
121

-A__________
Architecture Stye and the Engineering Design Process

One Eluatration of fth idea of consiten IstyWe In software architecturesi is provided by the OCU moel
Object Connect Update. A fthtmna description of Othi -stl is provided. Essenttially, fth st" is orga-
Nized around the Idea of subsystems, subsystem controllers and object. Itis an austere model ~hc con-
stitutes a style because it has a few pirnitiv design eleimens andruliesfor combningftheelements.

The ch~ is meant to illustrate how an ardhitecturi styl can be used within fth context cof an engineering
process. Fh'st.by constraining the torm of the solution so tightly, the style itself can serve as a tool for help-
Ing form the problem space during the problem loomnng process. That is, the style provides a kind of vo-
cabulary for discussing the problem space. Slitilarty, once formed, the problem can be set in terms of
the style as well
Pparlm"tisinot)jlgk mome ftn the observation nude by object-oriented designers in undeutlting a kInd
df objec-oriented analysis phaese prior to design. On the othe htand, the very restrictive style, If sufficient
for the problem spaew, can be said to allow the software/systemn designer to focus creative energies where
they are needed most, rather fthn on reoirwentin structural or coordinetion models for each new problem.

The OGU style was used in practice as fth basis for a flght simulator.

References
pBgfigte 11 ngineering in Software Pnseinaemg aninotated briefing, Air Force lneifls of Technology and tie Software En-
gineering Institute, Carnege Mell~on University.

Lee, K, at. i., An 000 Paradigm for Flight Simulators, Technical Raport CMWSEI.88-TR30, Software Enginerworg mins-

Abowd, at. al., Strue-turul Modaling An fam~irtation Frameworkc and flevskqMant Process for Flight Similators- Technical
Repori CMUISEI-93-TP, 14. Software Engineering Institute, CMU, Pittsburgh, PA.

122

Arch fectural Style and CASE Tooling

DeOne Design Eements and COnstaulnts (StW*) Permits Automation

CASE Tool Styl Design Elements Automnted Services

UNAS/ALE IduieW Teo" . fe.as--a btatjms dan

*0 Tom mOmMpD

SARA WNW " * dlys

0*N15 ___________a OnphkWc Demoin Toofs
HNod"

*CSInal aiies

.Dele/ulil

Architectural Style and CASE Tooling
The previous ch~ Illustrated the role Via wcrlscthxe style can play in the engiteednrg process. It as also
the cms that defiring an arhiecue tye-dewtye design ealuminum and rules for robntirng thes aI-
ernents-provides opportunitis for alornalion. Only two of many pousible inslermoes awe Ihemaed here:
UNASISALE a conunrrerciai product nmakted by TRW. and SARA. a wellItnown research systemn.

In each case. these syslerri are constructed on a foundation al a low prkrrtnv elements, and larger sys-
tems can be specified anid executed. Other lools include the micio-Rapide languagefsystemn being devel-
oped as pert of the ARPNProloTech project, and various other tools for specifying properties of
architectures.

Incidentally, although there are many design tools which provide pukimtbies for describing characeristics
of systemn designs. the term "archilectuxe descriplin language"i Wtnd to apply to arty those notations that
describe corrionenus and cornponent Interactions (further evidence of Vie appropriateness of the Shaw
arid Garlan perspectve on softwreni architecleus).

Reference
Walker Royce Brown, 0., Archiltbctkig Disalrbulmd Rleaftn (eek) #As. Applications: The Softw.,. Ard~chict Ufecycle En.
vironmsnt,* Ada KX 1991. (Contact: Waler RAys., TRW Systerna Irrsgration Grow. 213.7643224)

Gerald Eastrin, Fenchel, FL. Razotbk R., Vernon, t, SARA (System Al~chilecia Apprentic): Modeling, Analysis, and Sim-
ulatio Si~qmr lor Design of Concurrent System, IEEE Traruactione on Softers, Engineering, Vol. SE-112, No. 2, Febru-
ary 1986, pp. 293-311.

port. 1-Logix Inc., Burfinogon, MA 01803.

David Luddiam, Vera, J., *opRids: An Executable Archltectswe Definition Language,"Apri 7,1993.
t24

Bato~y Desig-Metho ---Arch----c---e-Styl

Batoiy: Design-Method --+ Architecture Style
Ardectrolev utoaton oesno aiay apea to dpnd uomwnprdenonoasmlnubro

desin eemens. atoy ha deonsraedaplmcto-seii gIeaincnpstnbsduo ot
war arhiectre innontrvia apliatin omans

oaplcaios fbirom thedsg~rtcu

implemened btyltee hge-vl(Component) btatos Apiation hghe-evels rlmof ein1 e pa

125

Architecture and Module Interconnection Formalisms

One form of module Interconnection
~ formalism addresses the need to

separate coordination from function

The need Is especially strong In
rousing comjvonents where systems

will varybbution and heterogeneous
ffplafforms

Examples: Polylith, Linda

I modelsAnother form of module Interconnection
formalism addresses higher-level
semantics of component composition

Examples: LILEANNA, P++

127

Architecture and Module Interconnection Formalisms
"41 most cumasen hImoMcotatsieuderallon in software architectures a how concets software components can flL'A qua.
Vaon concerniong to remokinships between sofware comporents and architectures, ariims woiw fate bunding ticr. lcon-
cored Especilmlywhmer reuse le concerned, architecture reuse implies morno lexiblltyin selectingl appicalio bhame. ff
components prematurely embhed certain features toe probeblIly od rousing these components is decreaesd.

One trequentiy-onoounsared problemn is that ccde, especially forr dalbulod systemns, embhed& coordination logic which aswa-
cane and maims Ine cods non-rousale. Skmc toe "connections' among components at an architecttre level may imply co-
cricneatin models, It would be nice to hame 9ie means of separating lieesPmm cosination models rorn the underlying
componenlets-lies amon purpose lor MIFs.

A seon purpose concerns the manipulation of safofwar components mas deseign elements In thek own right. To acme extent
thie le already possible with ohjsct-orolenud languages, (although Balmry has noted some limitations along those Inen) MIF*
which extend the ena~lto~btcinof programming language modules to support a more, lexile composition at
design-tnie would be rice. Languages much an ULEANNIA and P.o. are designed with lim kinds of nouen in mind, and
allowfor an lhng modules, adding, umoving and hiling capasbiilties of modules, parameterizing modules with other mod-
Wass, andso on.

David Gelosutor, Cordaero, N., 'Coordination Languages and thier Signiflcnce,"Communicalions of to ACM, VOL.35 No. 2,

Joh Caiciisn, Purt, J., 'A Packsging System for Heterogeneous Execution Environments,' IEEE Transactions on Soft-
ware Engineering. Vol. 17 No. 6, Jtme 1961.

Vivsk Singtm, SaOry, D.. P..: A Language for Software System Generators, Technical Pepofl TR-93-16, Department of
Computer Science, University of Teom of Austin. 1993.

wEII Tracz, "Parameterized Programmning in ULEANNA,* urpchlighed, IBM Federal Systems Company.

0MG 'rho C~ommon Object R~equest Broker Arcttiltusce and Specification' 1992

128

SEI:-SAAM-Software Architecture Analysis Method

Lf

bn

Ardiftecwmtaf DScdmmnLagug

lands

meashmestt ci o appyt o eaio ranlalltc etaU" mysllitim-as ouit.earspselmen-meo

Th e -SASoftware ArchIitecture Analysis Method hesm etrswrh fnt.Fs.teela neso li aln~a

concept of examnlirng a design fram the perspsctive of multile styles. In SA.AM multipe designs are examined fram Ine per-
specive of a single referenes moda. The reference model is a canonical tuicliauial partitioning of application kinaidtns-it
bakec Wce a htigh-level domain-specific design.

The secoond intereting feature is the use of an architecture description language (AOL). In conunction wfit the reference
miodel. individuaf unique* erchileoturee can be 'profilsd, we In effect re-cast in terms of the rsftesnas modal anid toe ADL
In this way dlisparate, unique designs msnrmialied' to a common linguistic harunweaul Noteltha theAOL used isfocused
on structural aspects of the design; specific behavioral doeeartion Is krillsd to the Idea of'convol loV and 'procasesThe
desig of the AOL may have been kinluenced by the application domain: the 12ftrentistion of 's~ds Iarn"passive repos-

Wtr seems to indicate the inlueance donos r mare representativie mohiecituris wifti thedomasin being studied.

The third interestin featsr is tha quality Isfolae are selected, along with specific scenarios which ezercise Irn quality kc-
tars. Noae that the quality factors awe bocused on so-callsd non-functional system characteristics: in the pape to"s beta.s
wers focused on various diniensiane of system adaptablity. Kamunw% at. al. deem 1% quality bctars to be relevant Io sa s-
cilic organizational context, niot necessarily to the application domain. Other non-functoionl quality betors may be of we In
different contexts.

Kazmnan. R. Sass. L, Abowd, G., Webb, M., Ansbing EMp~no .User kffmo Sttar, to be releasd as a Tschiical
Rsport, Software Engineering Institute, Cameg" Mellon Univerity, NOtWurg PA.

130

SEI: Information Architecture and Non-Functional Analysis

LInfaimatlon Architecture ;owwk

atm-Linefftesti : ef

Qualityy 0

of hurdnim

et *yjy*gjjf4lftYL j UVterfflicwtIonD
avalhdablty

arScenarios;
ItC nd~ctors& Meulcs131

SE!: Information Architecture and Non-Functional Analysis
A draft paper by Salasin of toe SEI an analysis of non-lunctionial chemacteuistica ot architectures for the Bat-
listic Missile Defenise O~au~uation (BMDO) Battle Mmagepment/Coninnd Control C~omurr~nartis
(MMKC3) System discusses proces and representatio "sue of ensuring satisfaction ol non-fwuctionhal qual-
ity featurses Instead of post-modtem evaluaton of afticli quality factors the approach described budis -satis-
facbWo into the architecture refinemnent process and architectur representlation. Some notable points:

1) The Information architectur reflects a comiplete deeig ensentle (oontlextform, hers expessed as prob-
lem space/solution space). The *mission ardfchitere. lor example. models the operationial reqtirements (the
shalr as well as the concepts of operation.
2) Non-functional quaflites:

"* am made explicit in toe tan of nIrcalos
"* as fed to objects in fte information architecture;
"* are used to definie scenwios for evaknurarioveflcation purposes (similamr to SAMM);
"* have metrics associated for quantitativ evaluation of indicators (ie.. did ohe oonyiiiment satisfy

the obligation?)
3) The p mrocess for managing the non-functioal reqtpemnwtsis step-wise, mid can be iftegrated with existing
desog revseww

Relerences

John Salasin Wauo. D.. -An Approach to Analyzing Non-Functoioal Aspects During System Defirtitiont,
Draft Technice Paper, in Proceedings of the ARPA/DSSA Vii Worlshop.

132

Roadmap for this Session

Arhitacure Muti-Dimllinr Overview

Manufacture Perpective •-- :a d mwin
: aMeparts and3momNi

Engineering Perspective -• : m disipline

knowledgeIM hiOL e onglu ng

Architecture Perspective • t..M c dupund• Ion an €otR: bouncls on re aft"
* design paunems md "M "

Software Architecture Overvie

Scientific Foundation • :IdifleatlkM= m3o, dciýptIo• utiucilon and manalsi

Engineering Application and concrf.t modlqs

• .lneng and production tschiqes

or Considerations in Practice le considersons
s conomic Issues13

133

TM~ paggs intnmoa* left Mar~k

134

Practical Considerations
"* System v. software engineering and binding time of design decisions...

"* Procuring architectures without over- or under-constraining the form
(reference models, tools and representation standards)..

"* How to allow technology progression and Introduction of new, more op-
timal solutions (architecture life cycle)..

"* Re-englneering and architectures-migration and Interoperation of lega-
cy systems...

"* Ownership and rights...

"* Domain engineering and domain management.-

AND... Much Much More. The Workshop Is Intended to Identify Issues from
the perspectives of engineering practitioners, program managers, policy
makers and other stakeholders.

135

Thu page mienimenu~ ft bklinc

t34

----- - -
....

Summary of "Senses of Architecture"
" There are a diversity of perspectives on wht Is "important" In the study of

software architecture
"* There are Interesting and useful analogies In the areas of manufacturng,

classical engineering and classical architecture

"* The computer science and software engineering foundations are not mature

* There are a range of practical considerations for the adoption of software ar-
chitecture In the DoD

137

ThI page inte nally left blark

130

r~~~~~~eso ANlhtd 3SslnVSsI~

* aoos Sm-iI -

.5 pkeCA e
. ._ _)MM-

Suwo IF :

SuonI
- aleci ~ Tdilg

~I Npmmm"

-A,.

140

Central Archive for Reusable
Defense Software

(CARDS)

Session III
Software Architecture and Reuse

16 November 1993

rftg pap Wf l PA "

142

-~A-_
Roadmap for this Session

w Architecture "Defined" pr --
awch~tgcr: a hypoiliml

Towauds a Science of Architecture wnd ofsmww

Trends In Ahrchiecure for Reuse odisa

Architectur-Based Reuse owrs Of F1 o , I

Systemts un

143

Thw pag kisnandy moU bharU

Two Key Questions In the Search for Architecture

Architecture: High-Level Design Ar: n D is ne

I RequiementsI Deign
Am ~M .ns 9C- 1

Design Current

Implementation Methods

Product Pempective Process Perspective

if this is valid, then the question: if this is valid, then the question:

"S4

Two Key Questions in the Search for Architecture
Session two of the semnanr covered many diferent perspectives on the tjopic uUcectur. We are in a po-
sition of hypothesizing about toe structure of the conceptual category "architectue This a not the same
as providing an axiomatic defirntion. instead, we will adopt a phenornologicel approach: based on the
concepts we have highlighted earlier, can we identify what chaceristics we might observe of software
architectures?

Before we do so, two premises need to be established, and two derivative questions proposed, to justify a
phenomenologica approach. Note that only one of the premises need to be true, although both could be
tnWe, for a Phomenclogical approach to be reasonable (although our notions of architecture phenomena
moht sill be mVarKd).
1. If it is valid that software architecture is a high level design, then is it true #a all designs have an archi-
tecture? We belie that not al designs are "architecled" designs. in the same way tha not all programs
are structured programs.

2. If it is valid that rchitecure isacbcipline of design, then is it true that the forms produced by the process
wil be different from the forms produced by a non-architectural design discipline? We belie that not al
design processes are based on principles of architecture, and that, in general, current design processes
do not produce architected designs.

If you ac•ept the premises, the questions and our answers, then it is reasonable to ask wheotr, in theory,
one could observe differences between architected and non-architeed forms (i.e., designs). If thee are
no observable forms, then why study software arcdilecture? If there are differences, what are they?

The following seven characteristics of software architecture need not be considered as a rigid statement.
It is not clear that all elements need to be present (in the same way that a three-legged elephant is still an
elephant). And, naturally, there may be characteristics which we have not included. 146

Seven Charecterlstlcs of Software Architecture
*relatively few elemtents
*structural and behavioral

1. funto v fom . corinaio

cofiurtin of design
2. Paitters *repeated organizing strategies

________ *scalei through repetition

*standard configurations
i: *documented characteristics

3. Named P-ailama F--=~Z)fl descriptive and prescriptive

*coherency among patterns
4. ctyln system-wide pattern

* se the whole from a pr

147

Seven Chatacteristics of Software Architecture
NOTM Wed& riM d~m VWn ON dChm~Iam liwt m be preseMw or i2 s Oft uu= a =rgiwV wlvet 20 d chvMadds~L W. be-
1w, c Sal fMe Weinsn im y be obswvWdIn =wcisd dmigea

1. lIdantiaeflasigr Do lanywil. As we rnoted earlier, one characteristic of architectures is that they may
be represented in terms of so-called arshitectmur description languages (ADLs). There are various com-
puter-aided software engineering (CASE) tools which claim to be 'anchitecture* fools, and they have cod-
ified abstractions, rules for composing specifications from these abstrections, and environmients for
simuiiatinglexecuting/evaiualing thes specifications. The SEI Object1Connect/Update (OCU) 'style' also
has identifiable design elements: objects. controllers, knportfexporl areas, etc. Note that architecture de-
sign elements should pertain to the Structure and behavior of systm at the comiponent/connector level
of abstraction. It should be possible to separate application functionality from structure, and structure from
coordinatio among structural elements.

2. Pattem. Patterns may be reflected in the types of design elements and composition rules, and in spe-
cific configurations of design elemnents. However, ptterns are not dependent upon specialized, architec-
ture-level design elemnents-they can be reflected in the prprisof implementation elements such as
code components, modules. For exanple. type properie presented by componerd interfaces w~c are
generated by a design method also represent archtlectural patterns.

3. Naa aim. Pattern should have sufficiently regular and predictable form to be recognized and
documented. The features of the pattern, its strengths and wealmresses. and the contexts for the use of
the pattern, should be apparent in the Pattern definition. The patterns should be descriptive, i.e., sup~port
understanding, and prescriptive. i~e., support reasoning.

4. fib. Style refers to a sysem-wide pattern, or the application of principles which bring about a state of
coherency among the patterns used in a design. Styles should also be name-able, and permit description
and prescription analogously to named patterns. but at a systems level. u

Seven Characteristics of Software Architecture (Cont.)
alternatve and raio al

5. emom~ atx/Fu .. j = n oun.aac
Ensemble ________remown about context forom

LI#1 . general laws: mathematics
6.1 matrxal constrants hardware

:ML J form optimized for anticipated

-d resilermo to drift and erosion

149

Seven Characteristics of Software Architecture (Cant.)
5. CoXM. fazUaxffinEnsm ble. As noted earliera design problem consiastso a contextaends orm.
The idea of uIdng the form to ccntext appears repeate-In Ponry anid Wolf' delinition., in salasire infor-
mation architecture, and as will be seen wheore-ever design-level reuse is anticipated. We cen think of the
following two characlenstics as reveaing different aspects of a design ensemrble.

6. Tid. a In the engineering discipline the laws of nature define the boundaries of problems and
solutions. There ar equivalen laws of nature in the problems; and solutions of software systems. As virtual

dmacie, software depends upon the mathemattics of computation-wit is hoped that as toe discipline of
design and architecture mature, more formal, mathematical reasoning about designs will become corn-
monipacu (temiporal logmc type "mgcs calcuhs of commniuacating systems. efo.). Dmegns need also be
tbed to the practice of engineering wMOM an applicatioin aree-aesigns for control systems may lock differ-
ent from designs for information managemient systems. Finelly, there are materials physcs--virtWa mes-
chines are himplemesnted on real machines which define physical constraints on software solutions. All of
these factors represent part of the *contexr for a design.

7. AafmFomThis may be the most irrportant characteristic: it should be possible to reason about
the adaptability of fte design from Its form As already observed, fth context for software is constantly
changing, and changing at an increasingly fast pace. The missions for software are becomig more comn-
piox, and the capabilities of hardtware are pushing (or are being hindered by) software capabilities.

so0

A Note on Concept and Terminology
Software Architecture Disci line

more detile
solution models'I

.tAw
A Note on Concept and Terminology

The myriad uses of ftnoi c itcses somielimes conlusing-oinruse mnay result mna degenerate
vulgarizationi of Importan concepts. It should be passabile to more deanly ifferentiate fth concepts of ILI,-e~ fromn Vie ahWMtdw.-
One possible peaitonin straeg is Uistrated on the chart. In it we establish fth notion that architecture
as about producing designs. There are (at least) two disciplines involved: one hivokvin the structuring of
software, the other kwovong the appication of engneeft 1ngiow hove in pcdrobe solving. The structk"n
of software krvoles; comnputer science and software architecture. the engineering Itnow how, involves on-
gineerfti puMtie-sol~ng approaches, discipines and domfaiVapplicabon expertise.
With this viewpoint the question 'what a your acdvte&W iz's more clearly directed towards application-
independent structunng and styling; masus while "wbat is your desig is more dearly direte towards the-pcfe so"W.o

Roadmap for this Session

Architecture "Defined" 00xtrlyvuo qualm..o
ordldtoftm:am hypothesis

STowards a Science of Architecture •nds of-I.. amhw'

* OSn4)Il:,t• srchltlectums

Trends In Architecture for Reuse -• l arc hewres

oblqo-o-otrledIrve.rt hbuls
•overview of €xqt

Architecture-Based Reuse W. t - r•moe
Systems

153

Rim
-hspge hitanhxionuly left bW*V

154

pill 1111 1 - ---

Toward a Science of Software Architecture

* What kinds of software architectures exist?

* What kinds of software architecture best support re-
use?

ITNb

155

SS

Toward a Science of Software Architecture

These two questions are itnport for this seminar. The tha par of this session will attempt to answer
these questions. At this point it is appropriate to survey soe of the architecture styles tht were identified
by Garlan and Shaw. The graphic shows that getting to a theoy of software architecture isan upstream
paddle.

156

A -- --. -__ I Ii
What Kinds of Software Architectures Exist?

Main program and subroutines

Batch Sequential ObMorientecI systems

Pipes and Filters HierrchicalL

Data Flow Systems Call and Return Systems
157

I ~ ~ ~ -- -. -- . .. --l . I _IRW IN

What Kinds of Software Architectures Exist?

Academic researchers are currently studying and classifying architectures (similar to the way a biologist
would study species of plants or animals). Hopefuly tfs wil load to the identification of common styles
(idioms) and system patterns. The long term goal is to develop guidelines for applying these styles and
patterns in new/re-en eed systems. The main styles and patterns that have been identified so far are
explained briefly below.

Data Flow style:

B Batch Sequential - each step runs to completion

* Pipes and Filers - linked stream transformers

Cal and Return style:

* Main pmogmm and subroutines - traditional functional decomposition

* Hierarchical layers - well defined interfaces and information hiding (e.g. kernels, shells)

* Object-oriented systems - abstract data types with inheritance

Reference: Gartan, Shaw -"An Introduction to Software Architecture" to appear in Advances in Software
Eng. and Knowledge Eng., vol.1 1993

R I8

A-___ ---- -------
What kinds of Software Architectures Exist?

ccm uncain Processes

Rule Based Systems
Event Systems IItrrtr

Independent Components DIa s sysem Virtual Machines

Data-centered systems15

What Kinds of Software Architectures Exist?
Independent Components style:

* Ciornonnicaing processes - asynchronous message passing

* Event system - impici invocation

Virtual Machines style:

* interpreters - input driven state mnachine

*Rule-baised systemns- rule based interpreter

Data-centered systemns:

*Transacilonal Database, Systemns - central data repositorytquery driven

*Bladdboards - central shared representationfiopportunistic execution

Reference: Gadan, Stow - "An Introduction to Software Architecture' to appear in Advances in Software
Eng. and Knowledge Eng., vol.1 1993

160

Roadmap for this Session

Architecture "Defined" ql.
ar*Chiecur: a hypothesis

Towards a Science of Architecture ~.. *id.nds of amt'!tecses

or Trends In Architecture for Reuse • n,'t-baserd arChiectus

object-moented/event hybilda
•overvew of concepts

Architecture-Based Reuse s • eo" wt confngursdon
Systems analyi ut

161

7thl pope kienionaly left blafk

162

I III I Iafinm MEN

What Kinds of Architectures Best Support Reuse?

Object-oriented systems

"* how do they support reuse?

"• trends

orjet- mEvent systems

systems potential systems * what are the key ideas?

" why do they support rouse?

"* trends

What Kinds of Software Architecture Support Reuse?

An architecture that has a mdxture of object-oriented and event systems characteristics is best suited for
supporting reuse of design and code in our view. The following part of the presentation will discuss these
architecture styles in more detail. There has been an explosion in object-oriented systems in the last
decade and it is assumed that most of the audience is familiar with the basic concepts. Event systems are
less well known so more background will be given.

i an I I I I

Object-Oriented Systems - Why?

Key reuse mechanisms:

* objects
. encapsulation
- abstraction

*clamsse
- Inheritance

* mechanisms scaled-up to large
objects

165

Object-Oriented Systems - Why?
objects facilitate modeling the worde directly in software thus makin a system easier to understand. They
hide details (abstraction). Objcts reduc coupling and therefore reduce the propagation of changes.
Objects are more independent from the context of a system and therefore probably more reusable.

Classes; group objects for ease of understanding. Inheritance reduces duplication of designtoode and
allows extension of existing classes into new subclasses.

In the context of architectures anid mega-PrOgranv~ung we are not talking about smiall data structure
objects (code level). We are talkng about large components or subsystems (e.g. stand-alone tools).

The disadvantage of 00 systems.i that objects have to know the names of the operations in othe objects.

References:
Gairlan, Shaw - -An lintroduJction to Software Architecture- to appear in Advances in boltware Eng. and
Knowledge Eng., val. 1993
Booch - *Object-Oriented Design with Applicationg' Beniarnin Cumnings 1991

Meyer B. 'object-Oriented Software Constructior? Prentice-Hall 1988

166

Object-Oriented Systems - Trends

Standard Design Representations Improved
Reuse

Patterns

Object-Oriented Trends
Comnmon oject semantics: The Object Management Gropp has developeod an object model (as part at the Common O0jec
Rquest Broker Arcfltectuxe CORBA) which attempts to slandaidmes object management sennoeeacross helarogeneots
platlorms and estabish commnon bztacli (standarid general uftlt objects.- e.g. edlous. help facilities, *-mail). This bc done
by establishnag standard objec ---c- lgtWee) which tindude operations and parameters. The obpdc model would
promote exlensiv etmus of gener-al objects. The SOI l peasan lie Wdas of common slgitbess In 1he context of a specific
domain. This should prove b be a pawertu reuse approach.
Standard desig representations: Currently their as a proliferation of object-orienteid design reprsentations (graphics and
lexl). Devloping a standard representatlion wouLd greatly tacbiatu Owe rawe atl dlelgnfood..
Patterns: esearchers are beginning lo loenti and catalog patterns (m~icro~archilectures) in cbject-ofiented systems. These
paaema we organized in a taxnomy and have a standard documentation template that may incklde: intent. motivation,
applicability. participants, coliaborationa, dagrante, consequences. Implementation, examples, anid see also". These
patisnis wll help develop and tackstat understanding of software erchitiecha'es for whle systems.
Framteworts: Object-oriented tramewoftc are lexlile oonflgmallons of compontents (component classes) conniected by data
low. Fiurneworts hmv many of toe charactensltics ot a solliware archltectise. Researchers are eiqenmenling with the
application olftrameworks in variouse domains.
0MG OVIectManagMe Are~tacr MWid Sept 1992
Petismin Staiay 'Mepplng a Domain Model and ArcNace"r toea Genrtac Deegr CM~L8EI-Theal
Gooc Wdi N extOnueson Methods- IhII"n Oredr out of1 Ctios Ch Jounal of Object Oriented Programming - Otippemera on 00
Anslyals and Design MWl~August I M
Taft *Ad& 9X: A Techrical Summatry Commuanicators olf th ACM. Now. 1992
Garmma, E.. Halm, FL, Johrison, R.. aseldes R.. Desig Paseane *Abtrsaclion and Reuse of Object Orefutd Oeslgný-urpubu'ehed
pepe. Contac Eiach Gammnast Tallgei ftc.. 10725 N. N. AnzafBlvd., Cupeflino. CA 95014-2000
Nltleruasasf, ba Told wItzl z Component Orientled Software Developnoemw. Comunnricalons ot the ACM, Val. 35. No. 9 Sept.1992.
Ouschmain 'Rational aechltectue for objeet-orierged software eyistsni Journal at Object-Ortsrsed ProgramwngV, Sept. 1993

----- - - --- M 1111 i 68

--A- _ _ _--
Object-Oriented Framework: Example

Producon W6r

ObjectOrienedrmwr k ExampleI

An9 00faeoki oharual cacueada cItcuehasporsesef o oetsTisarcla

Buctnan atOna rhtcue o bject-Oriented sFrwarework:e JExralmoplte-resdr-

An 0 Sia epoisbt h a1993 rhtctr n nacitcu htspotsrmo ouoens ~ atc

fivnwor isfora gneri maeril fow ontol rste whch s prt o a aro thnewrk or fe~dle anuactrin

Object-Oriented Framework: Example Adasptation

171

Object-Oriented Framework: Example Adaptation
An 00 framework cam be dmigw~d to be adaptable and flezifc so that now objects ca subsystems =a be grafted in or
removed. The top part of the slide show. the basic ftamework. The boa=o part of the slide shown myers! new objects
grafted in.

References:

Nierstrasz, Gibbs, Tsichritzis 'Componet Ouiente Software Dsveloprnenr, Cormuniations d1 the ACM,
Vol. 35, No. 9 Sept. 1992.

172

Event Systems - Key Ideas

" Components can announce (broadcast) events.

Event Manager
"" Components can register for events of Interest

and associate operations with them.

Components • Upon event announcement the coresponding
operations, are automatically Invoked (by the
system).

Hence, Invocation Is Implicit, although explicit
Invocation Is often still provided.

Event Systems - Key Ideas
Event systems are emerging as an imporhnt architecture for integrating diverse components (objects or
modules). Many event systems are also object-oriented. They may also al explicit invocation (direct
cals) to control te flow of execution.

References:

David Garlan and Curtis Scott
Adding Implicit Invocation to Traditional Programming Languages
Proceedings of The 15th International Conference on Software Engineering
May 17-21, 1993 Baltimore, MD, pp. 447-455.

David Garlan and Mary Shaw
An Introduction to Software Architecture
To appear in Advances in Software Engineerig and Knowledge Engineering, Volume I
World Scientific Publishing Co, 1993.

David Garlan, Gail E. Kaiser and David Notin
Using Tool Abstraction to Compose Systems
IEEE Computer, June 1992, pp. 30-38

174

Event Systems Example

"Object A Object B Object C System Register

r A Oper 1 Event Object Oper

Announce write write w A AlýEety ý "lmpllcit I nvction,

x1 y B B1
Anounce y C C1Event z

Assume Operation Al Is called. This results In the announcement of event y.

The system register (event manager) shows that both Object B and
Object C can respond.

Obje B would Invoke Operation 51;

C would Invoke Operation C1.

If the system does not choose one over the other,
then "Implicit Invocation" will be output (in some order).

175

This pap bmenfonh1~ left bleai7

176

.Evolution of Implicit Invocation

SEE DBMS SpedhesProduction
Tool Integration Data Triggers pedsystems
Frameworks

General Purpose
Implicit Invocation

Systems

COMMA 0CA
Ads Event System

177

Evolution of Implicit Invocation
A main source of ideas for event systems was research on (SEE) Tool Integration Frameworks.These SEE
integrated frameworks; are usually a collection of tools runring as separate processes. Event are broadcast
via separate dispatcher process. Commiunk'aion channels are provided by host OS (e.g., Unix sockets).

The ideas behind event systems also show up in special purpose languages and appiction frameworks
which provide access through special notations and njnterne support. Examples include: active data trig-
gem for a DPMS. spreadsheets (via dependency facts), and production systems for expert advice.

General purpose event systems are beginning to emerge. They are being butilt within general purpose
language envu'onments Ike Ada. The Conminon Object Request Broker Architecture (CORBA) is an
emerging standaid for event system architectures across heterogeneous platforms. The Object
Connection Architecture (OCA) isa generalizalion of the Object Connectiont Update (OCU) mod~el
originally developed for the flight simulator domain (the OCA is related to the event system architecture).

References:

Gartan, Scott 'Adding Implicit Invocation to Traditional Programmning languages' 15Sth lOSE

0MG "Object Managemnent Architect=r Guide" Sept 1992

Peterson, Stanley 'Mapping a Domain Model and Architecture to a Generic Design" CMU/SEI.TR draft

Lee, Rissman, D'Ippolito. Plinta, Van Scoy 'An 000 Paradigm for Flight Simulatonir CMUJSEI-88-TR-30

11 W78

' -__ IU/III
Event Systems: Advantages

" Provides significant support for muse:

- Can Integrate components simply by registering their Interest

In the events of the system.

" Eases system evolution:

. Loose coupling helps eliminate name dependencies between
components.

- Can add / replace components without Interfering with existing
objects.

- Changes localized to system register / event manager.

" Upward compatible.

- Can still have explicit Invocation.

Tht peop kven* left bhlnk

160

SI I I N

Event Systems: Disadvantages
"• Indirection overhead may be high.

"* Special purpose languages for event broadcast are limited by definition.

"* Components relinquish control over the overall computation.

" A component does not know: "who" will respond or the order and com-

pletion of invocations, so cycles could result

"* Hard to mason about cormctness.

181

Ths pegs m•tnbtinly left blank

1111 IN I S N 1 111 1 'll 11111111ya m

Event Systems - Trends

improved

Standard Event Manager Interface - CORBA Reuse

Standard "glue" - Basic Object Adapter

Event Systems -Trends
Cotminued oesuch is neeced to explore tdw dmign qare ofevent sysum •mbanima and to fine tune them for specific
cimes of appicaions. Ongoing rmsrch i also addrmaing die prooe of&delopqing syNs beed on tie event systm
modeL

Re.ferenas:

Garlan, Scott'Adding Implicit Invocation to Traditionri Programirng Languages" 15th ICSE

Peterson. Stanley "Mapping a Domain Model and Architecture to a Generic Design CMUI/SEI-TR draft

-84

CORBA

objecttbjc

basic (speca I
I object .I I 1 ..po.e..

CORBA
Ta Objiect Maage t Group (OMG) is wboroutanddig tlmintmas to-.n obkect r nqes b whin the

Common Object Request Broker Archituctom (CORBA). OMG has developed an interfam definition language (IDL)
that looks a lot like C4+. Bindings to the IDL can be written in other languages (a C binding exists now). De OMG has
also defined a Basic Object Adapter which provides standard "glu' (Le. a wrqspe) so that components can be integrated
into a CORBA baed heterogenotm system. Special propose adapters can also be defined. CORBA is still evolving.

Referenocs:

OMG 'The Common Object Request Broker: Arditecture 8rd Specificationf 1992

I1iI

-- ------

Hybrid Architecture: Event/Data-centered System

DmcnWw SyutM

187

Hybrid Architectures: Event/Data-centered System
Large systoms often axe maci up of components ato have contined ardctce styles. Thi clagram
shows a popular hyWd arc*ecture for software engineering envronrne wtere the two styles are oor-
plimentary. Control integration is achieved through event system mechanisms wheres a data-centered
mechanism (repository) ladcltates data inregrabon.

Reference: Gadan, Shaw - "An Inlboduclion to Software Asdecturs to appear in Advances In Software
Eng. and Knowledge Eng., vol.1 199

iSS

Architectures for Reuse - Summary

Architectures for Reuse - Summary
As of late 1993 obje-oiened al event systems appear to be the most proms •archltecture styles far accomphshg
large scale meue. CORBA is an important initiative that should failitate the cost-effective adoption of a hybrid object-
oriented event system architecture. CORBA is also attempting to address a few other important issues such as inlerna-
tionalization (multi-lingual and multi-cultural issues).

190

,I

-------- -- . -"- - -

Roadmap for this Session

Architecture "Defined" ph... := =V.

WelNtcture: a hypouiusls

Towards a Science of Architecture ." • q mohkf-ect.m

Trends In Architecture for Reuse a•rc "'o ' "'

Architecture-Based Reuse • ovew Of

Systems enno

ALI=
This pop , tenl Ialy left bl' I

192

m~ui__
Architecture-Based Reuse for the End User

PINBALL CONSTRUCTION SET

VO- 4m

A> J%JI.
5~ mm Um~arU. ~ U UAUX>

se :'_ -

IV seanm IMwow &W

It~ F~zý %_ a4:M ID

amb dad 10 g ed w Il P ht w~ ~.,, ~ ~l~ft Ike e "hftuh ew m lpa-fp

i-ft IS SAW - and h

Architecture-Based Reuse for the End User
Sometimes 1t is useful to imagfine Ohe extremities of a concpt (e.g., rfedaxto adaifbourdum)n.
Is this pinball construcor kit perhaps the ullimate in architeicture-based rems environments? Nt seems tohave many of the elements we would expect: a built-in application trMewoi, set of components, rules
for construction, automated support for construction, mechanisms for coonectin components, etc.
In this example, the user of the reuse system is the application end user. Would it be unreasonable to ex-pect the end user of. say, a commennd and control command center So similarty cornposer the activity cen-ters, screens and information flow among screens and activity, centers within a command center? In theneaw term Othi may not be feasible due to the complexity of the application, the dependency of system func-
tion on events and lime. the impact of mission and doctrine, etc., on the end application.
References

Pinblle Constructor: photocopy ofateprouc jackcet for commercially-available personal compuer applica-
tion

194

Architecture-Based Systems for the System Designer

The Vrvoseapelsrtdaclekmbsdsiis o h n sro i ptcto eIil

tram he Crd prujcemonstae t Sonyet cl.Tem s ye defcedo the lys em t saDesigneris

Then Wvr u humanmacle kiuterated (HM). hile thsbaed sericste fon fth andh is taoee t the n desM" ign.t
vooughwe arevsious eatmple asever of c 'orabmd entr theW hn rhlcur-a ese systems irrsm tte aa.iiSo h
putwhet if wetaruetor suct a dsiysteemnota for thescaetrgedo application adu.btfrI designers? Inties caor
"compoiin coudmpove ione noutnhclsrton area etc. fmabtatm I hsilutaintw ylm

Note that in thee examples the design elements are 'domnain-specific." This was true af the pinbal con-
stuctor (Fq*Mee belts, bells, etc.), the window design assistant (display. scrollems, etc.) and the kitchn
design assistant (doors, sinks, stoves, etc.). But whet it we substitt for domaki-specif ic design elements
the components, or design elements, of an architecture style (or architecture model)? We may Wki our-
selves in en enviornment such as that provided by several CASE vendon; (StateMate, UNASISALE).

References

Gerhard Fischer, 'Human Computer Interaction Software: Lessons Learned, Challenges Ahead." IEEE
Software. January 1989.

196

ArchitecturewBased Systems for the Programmer

00

ArhtdreBsdSytm ortePogamr

Thsfnlexml lutrtsytaod ocp f thlcue-ae os sse.Wee h ibl

AppeMcnohMcP ersnsa rchitecture-Based Sos ystems torgth e d Porogrammer?.Ti

figure is copied from the MacAPP documentation, and ilustrates the use of an architecture as a template,
or fremewodk, into which application-specific functionality are uinserted. In this caethe application archi-
tecture is (more or less) lfxedr-much of the hard design wo* has been encoded in the application tem-
plate-
What thi succession of examples illustrates is that there is a range of possible manifestations of larchi-
tecturebased rouse system.' Moreover, these Illustrates only varied the intended user of the system;
many other dnensions of variability are possible.
A fmor general way of Nttidn about architecture-based reuse systems is to think of such systems as the
means of conveying the results; of a domain-engneering life cycle to many possible application engneer-
ing Ile cycles. Since the nature of each lIfe cycle will vary depending upon domain, engineering infrastruc-
ture technologies (i.e.. software development environment fooling), local cultures, etc.. the associated
reuse systems will also vary.
References

Apple Macintosh MacAPP Developer's Kit Documnentation.

198

Reuse Environment: Integrating Domain and
Application Engineering Life Cycles

-- , .-.---...
Domain D in:ren t: Domin Reuting D a COMPmn

Ays moaplicto Soniaeen Lif a~les

r e t Dmaino AArtecinr e Gen eera"eenhn :m'd

Oom•spe• ruseis Appely SI so y s fIospmrecds edm••

Mo odel. W r~

-/~ord .,• n ,.. -~~,o • recce

\~~APPICAIN ENGINEERIG-

Reuse Environment:- Integrating Domain and
Application Engineedrng Life Cycles

The re usee romntis not simply an appimc nion biiding eniro.nment t it ia set of mechanism and
reusa e Products that allow us in efect, to inlegate domain engineering and application engineeenng pro-
cemew

Domain specific reuse is generaly acknowledged io n of two separate rif cycles: the dom in engi-
neering Ile cycle. and te applicako engineerng Me cycle.

Some. mechanisms must be present in order to trnser the results of domain engineenng to application
enginerin-he packaging of reuse products, the tools and documentation needed to apply these prod-
ucts.
The chart illustrates the addition of a p aee dimensio to Othi packaging. That i. Owe kinds of reusable
products which flow from domain engineering lo applicat~ion engineering will depend upon the internal pro-
ceses implied, or required, by each lie cycle model. This chart Eutaftes Aus one od many possible mod-
Oel.

Reference:

T. Payton "Domain-Specific Reuse.' STARS 92 Annotated Briefing Chart. pp. 16-17. This chart is an in-
ferpreled rendering of one found in the STARS 92 proceedings.

200

A DSSA Wiew of Architecture-Based Reuse Systems

Domain

IAs~nUteotw

Opeirator fh

A-
A DSSA View of Architecture-Based Reuse Systems

TiNs chart ilualralss the ARPNASSA view of archii~eledmebased remusyernsy~~. The chart is coped from
a ARPAIDSSA presentation-the shaded box whdic highlights the apiainsel cdevelopmnent envi-
ranmnent has been added to emphasize that in ouw discussions we are concerned with the tools and envi-
roments delivered to appicationi developeus, and not With toe tools and environments necessary to
conduct domnain engineering activties.

References

U.Col. Eric Matelta. 'Dornain-Specific Software Architectures," STARS 92 annotated briefing. pp. 90-116.

W22

Reuse Techniques and Architecture

Transfoimat/onal

* g"Wators-NOWciraoftrbims
*as'lslgants-Ovklt tiuns~forms-O guidan for hwmnm ~Inteve W

Compositional

So where Is the "architecture?" (&kia. reifenceo architecture, application
fvwmework,...)
- pure transformational: In the transformation rules and languages
-pure compositional: In the form and function of components

Reuse Techniques and Architecture
We need to factor in another dimension in order to really undersland the himlcations of the DSSA picktme
for domain-speclfic application engineering erwronmyents. The exact form and conlertt df reference archi-
tectures, components and tools will be dependant upon the basic raus technology approaches Seimn. Big-
gerstafi and others have defined taxononries of ream approaches. Without gettingtio needless detail, a
top-level partitioning of approaches is the --- sf maonaIco -- ioa ichoomy.
The transformational approach i characterized by a sequence of transfonrmations among representations.
with each translormation bnnging the representation lcowards closerto some finl state. Two major classes
of transformational systems are:

1) generators: systems wheom the trnwratosae invisiblelautomnatic (or, mome commonly, there is
only one automated transformation step).
2) Imt Miedge-based assistants: systems where there awe multiple transtormatian, perhaps but not
necessarily through different representations, and where the transformations are visible to the "user,*
and where there s guidance provided by the system to assist in peiloming the transforvmation.

The comp~citional approach is characterized by reuse through manual composition of concrete code com-
ponents. Eith& r families of components are developed (e.g., GRACE components) or highly-parametenized
components are cqvelorjed. In eithe case there is little scope for autornation-

Interestingly, in both extreme the question of "where is the archiltecture" is the same: the architecture is
implicitly represented. In the came of the transformation approach the architeclUe IS found in the pattern
locled in code generators, in the terminology of the languages, and the rules for creating sentential forms.
In the composition approach the architecture is again implicit, or, at best, reffected in the structuretformn
(i.e., interfaces and function) of the components.

The use of software architecture can help achieve the benefits of both approace in a hybrid strategy' 20

-----E___-
Hypothetical Impact Analysis

Hybrid Reuse

pueyPurely
S COMPOsJeoal - Trunufonriwdonal

ReuseRes

"o, MAappcaina
017"

Domain Specificity

som:s Moft Orb. HowhouU-Pad.d kftmldWaW Pu=5o

Hypothetical Impact Analysis
AMhoiui there are no sold econoi modelstodckw iPon, tereIsgenra consensu with n teres
conmmanlty that. all else beng equal, genrwaive reus teotmiques wil yield more dramatic mause results
than a purely compositioinal approach-

The dowi Histrates a hypothetical curve, with the area unader the curve being "ecrononuc impact. No scale
or measures are intended, and the picture is not meant 10 imaply any precision: the Ishape ofthe curve is
a guess. However. a number of factors support the general hypothesis that hybrid reuse may provide, in
practice, the biggest bang-for-the-budv:

1) While generative reus would be ideal, such generators can be extremely expensive to develop, and
may orgy be effective in highly stable application domains. The most frequently applied application of geii-
erational technology is through application specific languagesr for pieces (s"sdomains') o application
domains. e.g.. message fonrnal processing systems. human-maclline interface Subsystems fornvlreport
generation subsystems we just a few examples.

2) Conpositional reus is still a labo intensive activity, and it is difficult to develop a sufficiently "dense'
population ofcomnponentsto satify diveseapplication req~rements.
Ideally, then, we wish to develop reus techniologies which support the opportunistic hybridization of gen-
erative rouse with compositional reuse, whereever possble. Domain-specific software architectures can
provide a mechanisnm for coherent intiegraton of compositional and generational rouse, and, perhaps, a
migration path towards incrasing use of generative techniques within application domains.

References:

Martin Grims Informal Presentation Charm, WISR6, Owego NW, Nov. 3-51993.

MG6

Hybrid-Reuse Strategies Centered on Arch itectures

.-' -

pail "laglersm" ad litrtaion

the om d -Oe naogy ee Stradesibe s th Ceen ee d anrchitectures adsg ihhlsI Lwt
desigelcn reinemen aste meas o with Ilsrthens hrome hPID some sestatheiole can be= sied byegoveratga
clomponenta fslci9aatn a motntpll o mponen from a component blitsrar.b In other casesthes hole n y bseq

fOWe by selecting among van"ou deepg alternatives, each altomalive adding information 10 the design but.
potenially, also introducing -new holes! which need to be Mild.

It needs to be nomed tha this pictm.e though ritch in concept represents one common perspective from the
OSSA program-difforent member proects each haw refined the meaning of this pictur msin different
technogie&mps andp panoeson. In at least one case the reference software architecture appears in the "nid-
dle" of a detailed system development proces including hardware. contiOllers and software. The DSSA
program has Euuraed that the domain-specfic application engineering environment does need to vary
according to the problem domain corninon engineering pralctice within the domain and cultural factors.

References

U.Col. Eric Malela. "Domnai~nSeific Software Architectures." in proceedings of STARS 92 Conference,
annotatedbriefing, pp. 9D-116.

Robert Balzer, N~odal Management Examples." in proceedings of DSSA VII Worksehop.

Robert Balzer, *Design Refinement in DSSAs," in proceedings of the JSGCC Software Initiative Strategy
Worlwhop. Decenber 1992. 2

M

Hybrid Architecture-Based Reuse and Compositional CM

Compositional cm: (system model,+ version spae + selection rules)

A_
C ox F

AA
*&0J% moo tda"

Hyri Arht2ueBsdRueadCmoiinlC

Hbrid A rchitectumebd re-sBOn ay oepsed sourfhse a ssue itoCompareithehbion reuse

appoach with the reaktively mature discpline of configuration management (CM).
Illustrated on this chart are some of the key principles behind a model ol CM referred to as 'compositionsl
CW in apaperby Fader. The key ele.ment of compositional CM are: 1) a system model, 2) aversion space
of sources, and 3) selection rules. There is great flexibility in the realization of this model (in fact, 1 and 2
can be combined). As Illustrated by Feiler, the this CM model appears in a number of commercial products.

The system modell reflects the structure of an appficationý-here modeled as a simple 'and/o graph with
or denoted as +! *and nd denoted by the absence 0f a symbol. The interpretation is staightforward: a

system is comnposed of A and 8, with A composed either of variant C or D, eor. (ft is inkrqxan to note that
we need not have such a representation, but it is convenient for the analogy.) Eventually, leaf nodes on
the graph refer to concrete objects, hi the version space.

The selection rules can be priniftive, e-g., an enumeration of the objects in the version space which belong
to a configuration, or can be more elaborate. For example, one use of the andAor structure could be to mir-
ror the hierarchical relationships in the system design, and could be 'decorated' with attributes which could
then be used hin selection rules as predicates, e.g., configuriation version 1 is such that we select versions
where TESTIEDTRUE and HOST-VAX It is easy to see how a family of systems can be enumerated.

For the purposes of the analogy, we will equate system model with reference architecture, version space
with component library, and selection rules with refinement rules.

peter Faller. Configuration Management Models in Cormmnercial Environments, Technical Report
CMU/SEI-91-TR-7. Software Engineering Institute, Carnegie Mellon University. Pittsburgh, PA. 210

Hybrid Architecutur-Based Reuse and Composftional CM

Corn Whona!plle P Hybdd Rouse
ConfigurationuSiin sp"c
Management wsclwIs soa niwabn

nmifth" Courw aw" kWAtenc

ffnlguiotlors solution n
MOMl

Hybrid~rchtecture-ase Reus and CtompstonlC

Our contention a ist #Wi many ways the hybrid archfteciomwbased reuse approachimm'oe Vthsci composi-
tional CM. The WoIIfkt ihotonine swen' to liatrate Ohese differences,~ ad shed lVigh on the tectmolg

cniderations involved in archlteclure-based rems systemis:

Pmoblhm and sluionUM erss MgMMbuild: Archiltcturebased reum involves managing complex de-
sog trade-oils and making decisions regarding whuch design decisions Io make, which componients to kite-
grate, sic. This requkus detailed inlonnation about the problem space. In conlmal CM manages otjeMt in
the solution spao..

evamalcniiiim For archtecture-based reus we do niot want to
have to enumerate ii osbeconfigurations, but rather define the rules for creating new instancss.

~~ CM is not a design discipline: twer is nolirtierent
need 10 capture aml ofMo mpe ameopednle ing cornponerie (see 'Inerisionalcogutis.
Note: there ar gray areas, such as Tartans Configuration Managemn Ass~istn

bi caHn amwmmfxdctom om the context in which components are reused is
changing, there is an increasing need for theme components to be adaptabl to Muese changing conte xts. This
is one moltivation for research kilto moduel interconnlection languages.

J~~~zuiyaraa.~atam -By defiiton, a relerenoe architeclure is incomplete. This irnplies that
refinement and comlposition tools will need to accomrmodate. track and Mnwage incOmPleteneuss

212

Hybrid Archltecftur-Baaed Reuse and Compositional CM
~~~a~~ .e hkaanripefneaL There ame same ditlerenoes with noieneu

mrat* concerned w the bin hsaclan of leakires and desal relinements Mlich may ooour as a 'm"t of
rellig seversl aspectes a d signumultaneously (wI aona deeip agends). it wil be necessary to man-
age hinonselsencies; it may eve be desiable to allow inconsistency. (Incompleteness can be thought of
as a sevemfrm ai of Inconsiutency)

AutAs desigrnsam refined tam munstbe a
way of evaluatling the partia and corileted products. Mwe engineering practices for evahjaton wil Mfer,
by doainin; to evaltuaion of caripiuatlar s mare concerned with completenes and consistency.

M -- 018M~M~la anwfimI1 Both CM and archttectre-baed xmus Wyiean ad-.
drawstiiexistence of nauulpi paowe ff*1g dunge toaliared rsmettar.However, the meniei
hin CM beon dwimige control and disig management. widet aaehtewk-bmd reuse systems will involve
mare elements c of itrSupia cooperative wauk. This is not unexpected since the aartikectww-
based muse systm. is Nagiy to en2hu~esi aspect ol colaboatiouve and explaratory design.

L~~UM sor a~idL WOd CM nay encoqiasi same aspects fci ordirehig
dineamong muitp1e patties th cornstruction of campositions tram a CM systemn can be thoght of as

maWN or less alornit However, real systems design WWke place over an extended time. and may involve
Muipl pries. with bedwut% dwdpdints ek-

POWe POlar Canlguauo Managemen Ma". In Commtrdafl Eiwkomenta. Techrical Ripn CAMUISE-91-TP,7, Soft-
wm Enghuetn hsftlmflh, Carnegie Melon UImahey. Pladsh.h PA.

RL Beize, 'Desgn efinement in DSSMe, hinW dk roe dig ft U .150 Soltaur hilftiv Siratag Woduhop. Dec. 1992.
213

Influences on Selection of Exemplar Systems

M raoIng wncetaincmety ne

*manugIng complex dnty an
Problem Scalein noaPSCltne

reasoningt with oto,

214a-dai



Influences on Selection of Exemplar Systems
A MITtr dl conheasclusic on ~WdicloJigar P~ rkgs94X-Md isse sytsln Can be dicer~ned kom
ft NWhee dOWSi an Vie pmvkmu ctwL Two ley Mm emerg which cifferoealae aldvcuiiwl~ue-ed
MkIMe s1YISIen 11M composillo"a CM sysienw this locus an problem go~no support and wmanagin mg-
ON COonPISMYtt rom scamb.
Both of theme togeth may kmpl some use of W.omia odeling-4nducing both knowedge represientation
OWd mnor mathenatical. 1.0., aiglebraic. reqxuientleiom Even I thVis hirqication is not amoeed by the
ree~der, .iterlekily toe cae tha the topic of ac uclw-11mbasedxw design mseistan and domain-spediic
er~ofiecau is alkaclng the, attenioin d resserchess in~b l bkW teligenc and sorwmlmetods Nakxelly
ths a Irgkuermcd our selection of tools for evaluation purposes.

Note: The meaom why we have endeavoemd to varilie shies eeplarw syteWms which
wil be cliscussed in toe next seulon hin detall. will be dlisclosed in Session V:
CARDS mWa SolwaeAr dtcwen.

Assecond conkbbug kotor is. *Io us. cii own prognern biawe basd In lrg part on Vie tectuolo
fasldeIorI sued by CARDS to build arcN=ctwebased reus Oxary systems Thes base tectmolgy
kaw5 heavy uonkowledg representtion systens. and dlermrosuttes the, developmnent of automaeted

MiW asinbants for DoD software-Itensive applicedons

215

SMsIon I Session MI

Se=,NY nV Session Vi~

Pin~dtv h_________
ologe:Lot cc LA eke

of eventle 5Tafalylse frmehhl
C- handboofoWka LJeCAMC

-. Emdwebnan

& StsnsIwnIV
.5nst, cc

, I : _j
Oil~c

m .E .Roee4 C dSi
ana - Ca'mon

ANY-NM A SOU101216



Central Archive for Reusable
Defense Software

(CARDS)

Session IV
Architecture-Based Reuse Tools

16 November 1993

I"hb pigskia uy left bkir*

210

- NOMMMEM M! !i! - • . . .. ." .. . .



Architecture Based Reuse Tools
0 Pioneers:

- Draco
. ROSE-2

, • Current:
- LaSSIE
. KAPJUR
- UNAS
. Technology Book

A Emerging:
S_. LILEANNA

. Rapide

Future:
-Integrated tools and Ilbrarles

219

L-A-
Architecture Based Reuse Tools

The purpose o this smeion a to survey some representative tools which a ieasm partialy suppo•t
architecture based reuse. This can be considered a mnik-domanin analysis ol arcecture based re
toos. Firs we look at some ear pioneer; to give an historical context. Then we looklatasample of current
tools (propiety and available to the public). Next tools emgkin from tho reesemc commwy are
examined because they may il gaps in existig capabilities. Finally, we look at te vision Ior the kuture.
For each tool we will describe key concepts, architecture representaions, tool functionality, and lessons
learned.

22O



Oraco: Key Concepts ----- -
"* Early example of architecture based reuse tool
"* A mixture of generation, asistance, and composition
"* Reuse all aspects of software system development:

. Requirements Information

. Design Information

. Source Code
* Application Architecture made up of multiple domains:

. Application Domains (vertical)
- Modeling Domains (horizontal)

* Multiple domain specific languages:
. requirements/domasins at different abstraction levels
. transfrmnations within domains
. refinements between domains

* History mechanism:
. tactics
. pre-refined subsystems21

---A- ___ I OIO
Draco: Key Concepts

Draco embedded lfe notion of an application domain architecture made up of other, often more general
Purpose domains (horizointal domains). These horizontal domains could be reused mothier application do-
mws.Drac)OO applied rules to transtcrm(restate) specifications within one level of a-- -ction(domam) and
refine specifications into a lower level of abstraction (until hopefully they reached code components). Dra-
co also used a history mechanism to capture tactics for transfoomiationskrelinements and resulting is-cc-
curring subsystems.

References.

Freeman, P., 1987. A conceptual analysis of the Draco approach 1o constructing software systems. IEEE
Transactions on Software Engineering. SE-13. 7 (July). 830-844.

Neighbors, J.M.. 1984. The DisoW approach to constructing Software from reusable comnponents. IEEE
Transaction on Software Engkrneeng. SE-1O, 5 (September). 564-574.
Neighbors. J.M.. 1989. Draco: A method for engineering reusable software systems. In Frontier Senies:
Sof ae RetUsa ily: Volume I - Cbonpts and Models. Biggerstaff , T.J., and Perlis. A4.J. Eds. ACM Press.
New York, pp. 295-319. Chapter 12.

Neighbors, J.M., 1992. Draco: The evolution from software componirents to domain analysis. International
Journal of Software Engineering and Knowledge Engineering. Volume 2. Number 3, September 1992; pp.
325-354.

Krueger, C. W.. 1992. Software Reuse. ACM Computing Surveys. Volume 24, Number 2, June 1992.131 -
183. =



Dmco

domain
- language

Domain AnalystTI ~~ Prse•r rc

Application
System ExecutableBuilder code

=== • '" .... Draco ... . -

* Paars. Pass ti appW~kon d€•ain speciwfict

* Pretypn•W: InlWea widi O systenm bulder duinng de refement process.

• Dr•w contm ainsfomwtionu , and rofinent n•is an coe como nes.

- Domain we-uly: Develops doma speakc lnguage. This reqwres a signiwsn afmwt of ew lor
eiter an application or modeling domain.

224



Draco: Refinement Process

.........4I.

application modeling domain~s executable
domain

.Mas

Draco: Refinement Process

The Draco refinement proes begins. with speofications only in the application domain (e.g Command
Center domain) and giadualy fleshes out the design by rel~igIasonn components trom the mod-
eling domain (e.g. DBMSs, Geographical Information Systems. Message Prooessocs...) unit aN require-
menis are tullified by executable code.

226



ROSE-2:- Key Concepts

Strategiestctw

a-A- ___tddpoitwb
RSe-2: Ke Cncpt

Five Strateies:

* use ~ design scea orpeetAbsrc esae designsouon

Rog of otwarre requaments andE- desin lopednatives AIt kseybslied i Stuctu res designrue)st
provdevmelopandcsomiW el dhesin useng thel and dal edigeabasedrefinemento palerofwadigmilm
ToUS dchev edny-edtaoW"g o shoultadd to spprente deign edpor rqieetaddsnatrations

u rsen utpe design viewa s to re resent e abthec reuse ade evaluationodeins .

References:

*M. R. Lowry and R. D. Mol~artney.1991. Automating Software Design. Calblomia: MAAI Press.
[CMhper 53

* Ltibars, M.D. 1989. A General Design representation, TectukaI Report STP-06689, MCC Corp.,
Austin, Texas.

* Lubars. M. D. 1991. Representing Design Dependencies inan lssue-Based Style. IEEE Software
July 1991: 81-89. Washington, D.C.: IEEE Computer Society Press.



Rose.2: Key Concepts
Desin SdumsM Wnsn die imenrs:
"* book ornhiecne for conructing systms ni a generl form
"* a set of reqirmentW and design aftematives that specify which customizaions can be appled to

the deepg
"* a me of spedalization fies that select among ateoraove design ajstomizabons

* a so of refinsemet ruins O peronn specific r deuign cuslomizaons
"* a set of consrs thatonf dependeis between dhren requkementd design decisions

"• Caslffication information to ssit in selecting design schemes fom a muse Wary.

" General Design Representaon (develop by MCC) a used asthe bass design rpmresentation Irom
which fte other design views can be isplayed

* State-tm ition da•gmrns and state cheats (to anser siae- and event-oriented questions)

S Rea-time stred analysis representations (to answer data-low and comrol-flow orented ques-
WM)

Sbnchral views (to answer questions about subsystems and lower-evel system components)

ROSE-2: Process

backtrack

select stantiate ein

design

ý ilol-l MIN I I I I ZW S FR Im ll 1I11 11 111 1 1 11 I E



Rosvo-2: Process
Sdema-bosep'orcs of Reus6VA Desig

* Sduw=aic
* choose a design schema from a Ubray VOa matches a given set of user requiremenis

Scrin.s kinarnton
- createaninstancosa selected design schem based ontoi gwmuenar requmrmnmt

* SceMa refoerwV
su44pply additional requiremenilb and design decisions 0 to lww Wide VIns relinemnert and
casomMAkOn of the design

Knov.ged-Bmd Re.7nenwt Paradim

The selecoM of design schemes and Vhe applicetimo Of refinement ruies ;o se~~mt Ceus tomize
design based on uaser requirnients is a softwares development process called the Knowledge-Besed
Reflineiment Paradigm.

Rose-2: Process
Adioantfgas of Knowbelpe-ams Refinement Paradtm:

"* helps to reduce the size and coVmplety of user-supplied software requirements by supplementing
themn with detail from the design schemes

"* helps am"s that complete anid consistenit requrernents are provided by checking them agarns con-
stromta and Mnus stuctiures in the design schma

* helps partially automate software design construction by applying the scheme's refinement rules

* lvelps support software specification and deepg as parallel and comoplementary activities; by refining
design in direct response to user-supplied requirementls

* helps support software design reuse as an h fegm part of the design pres

Design Extploratfon and
Dependency-Directed Badivaaddng

Allow the muser to supply and retract different requirenefts and design decisions and observe the effects
as different sets of refinemrent rules are applied to cuslornize the design



Rose-2: Issue-Based Infomiatlon System
Structures(IBIS)

Printer Is slow t Faster printing

niý-Buy now prints A Cost

Rose-2: Issue-Based In formation system
Structures(IBIS)

* Requirements and design questions are torn'nlated as issues

AlMternatives for resolving the issues (specific requirements or design decisions) are torrnulated as

* Each of Vies positions can be supported by. or objected to, by argurrents.

Representational goal In design reuse Is to incorporate the IBIS mnethod into design schemnas and design
reuse mnechanisms so Mhat the following requireme~nts are mnet:

*Requirements and design aitemvathivs are dleauly presented to fth user as he/she attemrpts to reuse
and customnize designs

0 The ~se can eamnine the relative benefits and disadvantages of fie various alternatfives.

* The design history can expcidtfy be recorded and examined as the user chooses alternatives, and
the design is subsequently customnized

234



LASSIE: Key Concepts
Overcoming "Invisiblifty"

Reuse

Complexity &
Invisibility

Software Information System

LASSIE:- Key Concepts
Brooks Identified two problems in sollware developmient: Comrplexity and Invisibility. LASSIE a intended
to exploit asa means of attaclung these two problems.

"* Complexity: Software is relatively complex cormpared to other constructs becese no two
parts ami aOw, and scale-upa non-linear

"* InvisbtW. The structure of software. unlie b~ildigs or aigcmobiles, is hidden and difficult
to visuialize. Exectution behavior i the way we generally get behavioral data

The developebr'sbden is todetermine whether l~i soetg has been done before and how to make it Con-
form to the architecture. Bit:

- Invisibilty leads to violations of the ardhiecture.
* Aamiectwu violatiosatemorel no frrilahlties. ter910re more complexity.
- Increased complexity intensities invisibity. Arid so on.-..

The also hampers irems and losters wastaehi 'relplemerilak gn, which in turn exacerbate invisibility and
complexity and erode Integrity.
Irliviuabilly, is also manifested by adiscovery phenomina*

"* what a developer or maintainer must do to Prepare for the actual task
"* talce approximately 5D% of of develope$ time
"* is a tral of kqtdries to gai understanding of the system at hand.
"* Visuial displays are not effective; even graph don't simplify things much. Doamnents are

rarely up-to-date and correct and complete arid available and oerieted towards dwoccery.
Knowledge largely resides in experts who may niot be available or willing; may have to re-
establish context; may not explain well.

a"



LaSSIE Key Concepts

Prerdwmnw Devanbj. Ronald J. Elrachmnu Peter G. Selfridge and Brime W. Ballard.
IaSSIE: A Knowledge-Bined Software Information System
CommonwVceaw oftteAMA May 1981.* pp. 34-49.

PeOWra Seltrige
Knowledge Representation &qipport for a Software Informaton System
Ptoondeei~ of the ?Mh Conference on Anrltifca ktelhigenmeAppllaftmo
Februwy 24-28.1991 Wimwi Beach. FL. Volurre 1: Technca Papers, pp. 134-140; Volumne 11: Visuals. pp.
271-29.

Peter G. Sellrdge, Larm M3 Teeee and M. David Long
Marwagin Deeip Knowledge to Provide Assistance to LawgeSce~e Software Development
Prooeecfng of the 7VP Know1ege-Based So&"ar Engineering CoA~mnce
SeplenVde 2D-23. 1992 Mo~ean, VA. pp. 163-170.

P.F. PaelSctwrelder. R.J. Bractvmn and H.J. Levesque
Argon: Knowledge representation meets klmati~ori retrieval
Proonings of the Ekt Conference on Ati~dal Intelligence Appicabons
1984, pp. 2W0286.

all

LaSSIE: Key Concepts

MICTUMLATO

DATA4TAIU
DATWO(TATE

Ianfonentso quay rK4Eoewe



LaSSIE:, Key Concepts

Knowleidge Base: Emphasis is anl captul th emaentnics of the a~Ions and objed Of the achitectuio.
Support is pavided fr cmnplex quesbons mvodng archilecluael. conceptual and code views withoi

ow10ing s~trucfreofKnowledge Bin.

User Interface: Pirovides easy access atea conoeptumi "ee via a windmiowvnos rwerce. piovides '(Ojey
by Reformiuatio (PatelScv*viel, Bracnman & Leveeque).

Knowledge Representation: Fumire-based sWone whirthMeultance. which ofisi; economly of
representation and semantic Integftt. Ralevailm WWt we kutaes; of the frame subusxned by the query.

Exernple: System recognizes 11at MERG-ACTION is a CONNECT-ACTION based On the descuriptions of
each. it also realizes from the description (not shown hare) of Attd-Button-Puah that this is an ACTION
by an ATTENDANT, which is defined to be a specializatio of USERL The Argon-kem uLer interlace displays
the r~ewved hiividuais. fmmnwhuich the user can select one for detailed display, wit all its Moos and itieut
each of which itself can be selected for fulthe display.

UMftains: Action-based representation does noot help the developer establish the contexts in which the
amtIon a ampedrfored- no map of the earrtory. Plan-oriented questionis lie: Why is this operation being

pedorunedr are not suipported. Knowledge acqasitio is emertill manual.

LaSSIE:- Related Tools - CODE-BASE

type" TU aO=-DZRUC?

~umz tea.have LaW La thejzft

ZOASID 7
11U3.3A-DWZ2CD-Z) to 11 *CtVZZ)
OR(EM-N1110 (1 11 *CCTEZhU

CoSU-3A8-QUUY: (x: az-zr-fumation i x ta-La laatdile-funauatt, haa-aafl-fwaatLo&)

0 0OW 5S26 op pro"=~ lam CP pro"=
PPAWSs 1IRMOa-PUMMIN

aas-w-awmsauas-m~ 106
3A5-DJIUD-ZV 6(053 261)

240



LaSSIE: Related Tools -CODE-BASE

Conipententuy to L&SSIE: LeSSIE hsupported semnwic-besed disbovery in a hand-coded donuin
modelWGWu is to extend oonoephil mel nri kto anpar1awe a code model and provide mewrtilgful bile
between them. COOE-BASF represenis code-level information (at the level of a consrout such as a
procedure. funclio or declaration) which is autometically acquired, thus guaranteefg synchmotai aon of
KB with Nhe code. The Loer interface allows posing 01 specific quell.. nse asN Mipulx ster tWraveisal.
Thus we see a reoms engineering type Mal suipporling a ream lool.

CODE-BASE: exa,,ple:

* Upper-Left Panel: Browse the concept hiearchy

* Upper-Right Panel : Exarrine an individual =Icncpt

* Middle Panel : Where CODE-BASE queries ame entered

*Lower-Left Panel : Display instances which match the query

* Lower-Right Panel : Display a selected instance
241

LASSIE: Related Tools - DesIgn Assistant

DesIgn Annotated Design Document Review

Design Document

Trace of nterc242



LaSSIE: Related Tools - Design Assistant

" Need to ceinpb the is taeoe which isnot doaxnsied arid .unui accessibe onl ftogh unmn

"* To manage such knowledge with sitonmion we rnuma deal wilt: duflcaity of acoqiidon mpreseeu-
tio and acceslilty. anid malntalnno of design Wwwledge

"* Can't swus ahUM sazf in0e oomireIEos, cjmpb of ala the IoMcwedge. Need tediUm to captire
elabora-IoN and evoklimlnofdimigL Need tacililes to cmptiv now knowledge arinng from omul
desig ad review aclivilies

"* TaonmyW of design probemrs wilth masccled advice Norm which: iwrnoes; reduntdancy and faees
tales an advice exceprion (Le.. override) umehanism. KBis accessed by a design assisten progwan
which manages the syternvIuer dialog.

"* Maintennc via #h iospomlmaon of desig advice Into the desIM
sofIt isalsosugjotto therm omalrganizational review process.

243



- ----KAPTUR: Key Concepts

... ...- ........ .. ... Advocatese WMU Approahet
Domain An*"si PLe case-Saseed Domain

..... _._ _ _ : Anaysts) Which Combines:

class, ossiag

... ~ ~ ~ ~ .eat... melods Salng , e lnd tom

O xtn ISE@15 FODA by Including both
vIsMb aMd nonvisdbl user Isatures&

- mseftedI reasoning

Catue - henc KAPTR Dowain Prodcts
LeAgacy Systems, Features, Design Trade-offs

imam mnd Rationale

*Follows a Supply Side w.. Daemnid-SIde Cycle to
Domai n Analysis and Systems Analysis

*Supports Various Archhtectural Perspectivas

KAPTU wa developed by CTA kxcoporaed under NASA sponsorship.

KAPTURisa tool lhatm used incoqrictiohn with an entire domain analysis proces that begins with iden-
tifying and spnga domain, Icaphain and analyzing domain Inlormation, creating a validated domain
model, anid using the knowledge captured and modeled to generate new systems on the domain using the
knowledge gainied from the legacy systems in the domain. KAPTUR is the tool used to osganize and sauc-
tMe the information relative to the domain, as well as document decisions made in the development of do-
main systems.

The supply side of toe KAPTUR p onm (and.moel involves the accumuulation of domain knowledge, or-
ganization of tha knowledge, and knowledge placement in the KAPTUR tool. The supply side person is
lke a domain manager, a domain owner, ora domain developer - an expert in the domain and the person
who creates the representations of the legacy systemse in the domain. Tfs person takes the perspective
that components nseed to be reused and can distingaish the features or chaacteristics that make a com-
ponent reusable. The demand side of the KAPTUR process (anid model) involves the use of domain knowl-
edge as it applies to a new system.

References
OTAI IcPArFms-
si116 Execudvs SguWsyud
Rodwft, MD 208M

245



KAPTUR:- Tool Functionality and Representations
....... Tool tim. Au Nmip for Cepirihi

Operaional Feakmes
......... .....

-. * ~FUnc~n
Pwdmiao

...... .. e.metMlbdlg
-Deown

.**t-~ * EnOW-ty~blonslu Dips..
... ....... DOIa Flow Diugiun

Oblect Comuoa -nDiugrwrn

.... ....... . StaM Tmsitnm Diagrwrn

* ~, -Assumbly Diqeun

246

Descilpve infmton laftI &avalb for each an*Mtutct arid anmotmions (desmipli hiloirmation) we
"aviale for esoh elemnent in an architeocti view. Associated witeah witchiiectsm'e is a set of features
and witwt leahu b lmi hinfonmatio dealing withtriedecisin fthtleaksrepmsensm 1he trade-off asso-
dated with the decision, and rationale kir the decision mnade. Mny teahim may or may not be present in
any of the archtitectures. To the extent that a fetore ismi one architectur and not In another indicates al-
ternative knplemnentakns that a user may need to corsuider. Based on tIe presence or absence of a fea-
ture. the user may need to go and look at an altenaiv architecture, again loolung at toe features,
decisions. tbade-ofts and rationale ihdovnation.

KAPTUR is a tool used to represent software afchitecture in support of objectodented modeling. KAP-
T1JR has several ways in which to represent the objects analyzed. There are vaulous architecture views
(or pewupecties) currenty availabile in KAPTUR.

247



--- -___-
UNAS: Key Concepts

* UvWBW Netak ArfeilsoClur S@Wlo5 (UNAS)
________~~~ ___ ___ -eua by TRW
U~~~svd~~~~~ Aa qu~diiu PMMasb@0ed ASPIiCMnU Massiogs-

-CAME Tomb Di ~& Oow Flow dilvei Luauqgs Phenaorlc for Rapily

NO&ACAWOO Appmll90 - A Cot'hoP M of biligroled Tools to Support
.B~* s6A&P0&M=ai~ f Mb" Spedfi the Devopmerd sin MW of
N1!ugw1viscm I, SubQIq'"MIMMl Dlstvxmtd Appilocatoon

-*Um 1Rm~uiu L- A Soltware AMIlotsbws Design Puairdgm

*.ewate 
__jgte 

DwL ~mwI= = XMobo. ..- Compiler, CASN Tools Debuggers

.ZABqp ABWO aUdVS 0 Am gote t development of the logloal
OffHWuAIyb ?lawmkTqWoWa aroiioou. 11at, Wticd ks low mopped to

Immuvim Sualm SIolIaiS U' Ifo~te 11to hswor)
. Openingl SY=

R ~n*M and off-Ibm Wutyzers nokwuk
I________ re________isource muinagemeir, nunbue Itemise

246

At rs; core, UNAS can simply be defined as a high level language for building solt..,. archilechxres. ibis
language is tageed kir appi 1atrons (poenialy cistinbuled and potentially htelrogenots) based on a
messge driven paradgm. Hcarever in addition lo being a lI~M theo 94ds a highly integrated col-

0ec1ono0 ool and services wtich support the developmnent ol disvibuled applications and the runt-
ims mnanagemnent of those applications. These tools and language, together, define UNA&$ architectuall
design paradligm which is supported by arialilectural representation. nules; or assenrmilrg elements of
UNAS elements anid tools to enforce that paradigmn.
UNAS developmnent environmffent permits the architect to built the system firs WitOW actually being con-
cerned with the underlin physical oimplmenlation or hantwwu'e. This Ilogi.?r ardhiecknr can be defne
in termns Including pertormiance. structure and control & data flow and theni executed to establish metrics
with which to perform comparative analysis against expected and actual resilst Architectural elements
can be assigned and allocated to the target hardware environment, thus instantiatng the physics? archi-
ectise from the logicar.
Relsreo
UMAS TMaiin CIM, May 7.9. IaN
TRW Sy~sioEnghwulll & DevlopapiWDiviolon
O#Hfl271
Cwamn CA

249



UNAS: Toot Functionaifty
*UNAS:

ý'Z. Oteleoments and miss for their
: ww.- r55a S55-gtibeto SIt

rMonaf & ummngsmmv a. Sue

UNAS~ahl-* SALE - hainlend:
WHAS CASE Tool Oplon)

le: - QUlladmull ad mNAd~tiss l

~ SALE - beclenld:
4C) d§P411111 Ads cods gen-ruan u ftihn
ea~u~ssunderlying UNAS seevcess

________Load OWd Perlonknece nmodel
M~dA =N ift 11rmn beavi~oar Input to SALE

UNAS~s CASE Tool option. SALE - System Archilect's UcceEvrneke1 a W ehd
ology lobuid ealnftre am m As@MU as If=o LHAS elemnni s. L gupjtiei user interface ailows l" Or-
d~llas-i o iniriit -W hitectiuuigo elemeni nd iW Wontrconetmd grou thmf ~to loaberconiponente
ins cosiswtent m ne. As the dtite nicbw e k aledSALE's acasloexpeclsd or required perbnwics
metric and deep~ consiedeirations of Mike and processes In the system.
As a backeiMd to. SALE will genrwate complste conipilable source code wh~ uilize urderlyig UNAS
inteir-lask omnwuincefion (iTO) anid generic ap ncton h coals (GAO) services. Once compled, this ap-
plication built can be executed ma lsleo wac wixhibit perkonnanice behavior as presented to toe
toof SALE wil automatically geneate design documentration which describes bothinission-independent
andimission-depenen (Oha which was eniterd into the CASE Tool) portionis of the application.
The UNAS msaeproduct. provides the basic services for Inter Task Comnmurtication (iTO) capability
krwwn as ICsevice and milomnatic heterogeneous data transilation. Dail structures written in Ada
source are converted to meta-message format via UNAS alt-line message registration tools The meta-
message format s themows that penrmits data conversion between heterogeneous netwmork nodies.
Further, ITC services provrides las Ada package genemi to ensure Ada a strong typ cohesion between
fth distributed process which write anid reed passed messages.
Othe services of ITOIinclude error reporting and propagation, lask creation, interactives network manage-
ment. SNMP interlace to network management. and message interjecion anid recoding.
LJNAS's Generic Application Control (GAO) is a higher level of absnrction of fte services provided by ITC.
Pragmatically, GAG removes the application developer from many of the 'quirks" and detais of the ITC
layer as well as adding bufferedl lO to network message passing. message queuing, logical separation of
nodes, processes, and sockets from ther physical irnplemnentation. and built-in perfoffrmance and utilization.
Additionally, exception handling. erroir reporting and logging iss greatly enhanced and abstracted in the
GAO layer.

251



UNAS: Representations

UNAS Architecture Paradigm
Basc ellements:

£Z7 Tasks exchanging messages

h Messaes are exchanged over interconnected sockets

( ) A Socket is a names source/destination associated with a task

-*D Conne~ctions are paths between sockets controlling message flow

Tasks are organized into Processes for control and re-configumtion

~IProcesses are combined into Groups for operational uniqueness

2U

Theisem wef most basic aratlitackral eleents fthtcan beused to buald UAapplication.Processes.
am made up of one or more malks which comnumincate over one or more soduets connected to other taskis
(or !maelf in thecs of Wrier sockets). Messages are used to conunuicate data over interoonnectscl sock-
oW. Sodomt can be connected togefthr via connections (or circuit in earlier UNAS terminology) and can
be either reed-only, writs-only, or reKadrie. The figure below shows an example of a simple UNAS appli-
calions i terms of these elements.

CE PFederal Express; Message

ReadSocket Customer

Figure: Sample UNAS Application

In the above figure. fth task "FederaLlExprssr. cofmmunicates via a 'Wdte...Socker with another task
caged "Customer'. The message that is passed from the first tas to the second task can only be of type
'Federal Express Message". In this example, either task can belong to a different process, or they could
be two laksi in the same process.

2W3



Technology Book: Key Concepts

designs~ evolution ... ..... .s.

knoled Techooymo: Ke Con I....pts.

endomn hul rvd omain-specific Ifmainwdsaeadefcetacs oteba

inomto vial nteorganization . h prahs

* RprseTato frual nomto srcue omvaechnology BooksKy'.cet

7* ol prasied nthis seceuigdeininomtion webn h pranhusd antn damtabse Dof econsrints ania
systwie emati ad~w riablem way. otae eoored reiao mtermo

asunoyes ariddsimoArisa E,5is s of d Wo er Peeftthm O os fsotaegootanti eef h i
A MMMeushrowuaunmidproygOe~ a KflowktwowasweeCNamefb
Nowame available Imn te rbn gwau ni Thwe aproach is

My74. Domi e m more to. coso.dt 2s1-2aayisad42. kx k orpouc arii

.h Gm-ieS f-h r eto formo reoti Dsgn Change nd" u ri atbss fcs n m
Puensystornaf &Wt rambblf~me wI ay. Eee

Ma 17-21. 5W Dbios MD. pp. 231-2a4

Guierni AMan. EftC Schoef Wid Pm" POMPgl
Deowg as Evoliaon an Reuse
PtMOPO" Oran snooid Nffw tnww anf2 Son iem, Rsu"agy
MrCh 24-21. 1993 LUCC Ka

255



Technology Book Use:
Finding an Algorithm

Technology Book Use:
Finding an Algorithm

in (1) the user inds there we three choices of agorithtn for ooispuin" the CRC using the taxonomik

relatonship.

* Then in (2) she toiows an analysis of their space and time properties.

* She identifies mailtiple conl•nabons od generalor polynonials and alorit•h in (3).

* Finng that she must Le CRC-16 to maintain badkwards oowpalIilty, inispects th CRC-16 Pattern

Agorihm in (4).

* She finds in (5) the required polynomial coefficients via a uses relationship.

* Fnmally, she inspects a na'ltemticaj description of the algorithm in (6) via a documentation link

257



Technology Book Use:
Finding an Algorithm Implementation

Technology Book Use 2:
Finding an Algorithm Implementation

User sele=s te aloodtn in (1).

* The implementstion relation graph (2) shows ther ae three impWleentations of the CRC-16 pattem

* Designer selects a C-language iplerentalion In (3) and browss the source code.

• She also views te detaied documentaion in (4) for the chosen implementation.

2SS

• ~ ~ ~ ~ ~ ~ ~ ~ ~~- ------mmmmmnla 11II I



Technology Book: Tools

en gint

maretr frmlrtinaegoito

-workproduct development

260

Technology Book: Tools
The represenotaion Isam Comprmise between usablity owd tm..alty:

. Semantc Tags:issue, definition. assumption, imported constraint exported constraint,
position, design decision. unresolved, result.

. Syntactic Tugp: authors, headings. equations. enumerations.

. liftnn.tdon Is stored In typed nodes and relations between themn.

. MIN.o -an nods- awe organized Into taxonomies by type:
domain entities, project entities, work products. resources, statements, analyses.

. Relations Inckide : WsMr. taxonomy. derivation, aggregation, use, justification.
interconnection. ownership - as determined by domane.

* RADIO Environment (with Motif-based GUI) includes: O0jec oriented DBMS, DOLL (Modeling Lan-
guage). and Document Preparation.

* RADIO: provides Browserl/ Editor for: depicting bock contents, navigation, and updating.

*DOLL emphasizes descriptiveness and runtime flexibility, not runtime speed or storage minimiza-
tion. Nonetheless it provides subsecond response time.lnformal elements (text pictures, tables,
equations) ams stored as Framnemaker attachments to DOLL objct.

261



Technology Book: Graft-Host Method

Groft Target in Host

Analysis Analysis

Reconcile
Design ., • ,•, • ,,.,•Design

Implementation Implementation

Reconcile

Technology Book: Graft-Host Method

* Helps miss design constrint management a systematic and reliable process.

* Het: SysUm to be chanrd.

* Target: Subswt of the Hos affected by the change.

S Grqft: Propoed aubstmon for the ligeOL

* Peduces risk in cag by ponidig guidance for developing change plan

• Reduce need (via Mchnology books) for designers lo redicover design rationaes

* Fewer design iterations; more errors caught more early.

* Shorter training times for engineers and maintainers.

- - - -- -- - -



LILEANNA: Key Concepts

makgeen

fo al : Support for high level astrmcton an W

coniposition

264

-A-a
LILEANNA: Key Concepts

*ULEAnna is a Library Interconnect Language Extended with Annoted Ada, whidch is intended to sup-
Pont high level abstraction, compositioni and reuse of Ada Software. ULEANNA supports the design
of parameterized components and software architectures.

*The language was designed to allow certain automnated analyses based on formal specification of
precon~itions (using the Annia toolset); Automated selections, conpositon, tailoring and instantiation
of Ada code from ULEAnna specification and pre-existing Ada code.

* LL and Anna were pre-existing languages that have been refined and merged.
-UIL Is language for designing, strucaturng composing, and gemneating software systems.
- Anne is a language extension of Ada to include facilities for formally specifying the intended

behavior of Ada programs. It is designed to meet a perceived need to augment Ada with
precise rnachine-prooessable aninotations so that well-established formal methods of
specification and dociumentation can be applied to Ada programs.

* References: Tracz, W. 'A conceptual model for megaprograrmningr ACM SIGSOFT SEN July 1991
* Trucz, W., ULEANNA: A Paramueterized Programmnug Language in Proceedings of the Second In-

ternational Workishop on Software Reusability, March 24-26,19M3. Lucca, Italy
* Goguen'Reusing and Interconnecting Software Componentr in Domain Analysis and Software sys-

tem Modeling Prieto-Diaz and Arango

*Ludchamn and von Henke "An overview of Anna a Specification Language" for Ada I IEEE Software
March 1985 265



LILEANNA: Key Concepts
L LEM*JA pRosides meChRFsma ID speify aVstraton md coniposition of Ada packages. It has the
Look4ind-Feel d a language that exlends the existing Ada packages specificatons, irstmntusbions
and dependency mschswisms. LLEAnni extends Ada by inlroducing two entities: theories and
views, and enhancing a third, package specifications. It Intoduoes [geneutcj theores, which proviide
a tormual specilicabon of funictionality. It alo introducest [generici paciages as abstaction for Ada
(generici packages, which cmi serve as an abstraction for muilliple Ada packages or u~eetuo

* Supports Agctitecture specificmtim n md construction ofia executauble Ada application with two lea-
tires VIEWS and MAKES.
. VIEWS dlows uses to specify how generic paranneters exported services, and (11or LiLEAiina

packages) imiported services awe bound to (provide by) other ULEArva theones. ULEAnns
packages, Ada packages, and the objecis exported by theni.

. MAKES allows users Io specify how Ada packages can be comnposed and insantiated to form
other Mda packages. where VIEWS cmn be used Io rnefined and contio this pcoces.

* Bothn VIEWS and MAKES alow partial bindings, which If carried through the MAKES proess resulla
in Ada gerneric packages.

*Existing packages may be maneipulaed through packages expressions specify the inistantliation eg-
g egation, renmrning. additions, elimnination or replacemnent of operations, types or exceptions.

*Prmides support for version and confiiguration managemnent
* Pmvdes mdipe contrle iheudtence

* Supports the ftruotingV and composition di scitwais modules from existing mnodules.

LILEANNA: Tools

frontLILEANNA

Ada

compiler

267



-A- _
LILEANNA: Tools

ULEANNA cam be piowmnWed in cireciy or used with a vrety of IoM end tools The LLEANNA
Oauijwr k pat i Vo IBM DSSA Avionic Dowan Applicafin Geerwaion Emrw it. A graphical
coqeim ion wt end Woo has also been proposed



pRaplde: Key Concepts
. Executable arcdtocbar definton tengusge.

M. el uotb OW4em"ve, c~on g"rn aMd

0 dt'tuted hordware OWd software ayslems.
* japapid Fewbres incklde

(D -rhiseam m

*Tool Suppusled:
- CPL - Common Piciolayphi Lu~spfro. n-

OWd -ouple which ornasimee aRupide
sorc code into Ads.

- In - UsaIsted Run-*"m System for thle
VViemin end pdnrlnh Of Partially orde"e

0event terae generatdby apP de
0 Sono mpuationm

Everit- POOB- Purtlay OrdereOvd n truce BrOWuer
for Oim viewiNng of pRqpld computations as
OW~ Occur.

269

g~apide: Key Concepts
Event patterns are expressions that defire sets of events and their dependency and timing relationships.
AA eventsignif les an activity during system execution. Event patterns contain information such as threadts
of control, data value, time interval; modelled as a t14,le of values. Execution of a distributed system is
modelled as a partially ordered set of events, caked a poset. based on causality or timing relationts.

An kotrface gives an external view of the behavior of a type of component and defines how components
of its type react to events by changing stae and generating new events. Members of a component type
are called objed&.

Ardalcturnw define the Bow of events between Interfaces. An archhtsctwe consists of a set of components
(objects of some Interface types) and a set of nies. These define how the components commnunicate by
sending each other events or callning each otherls hsictions. Cornounication rules are defined using event
patterns.
Mapplng define hew architectures are related. One can the define hew events; in one systemn correspond
to events in anolthe. In the domain of design hieirarchies refinement maps serve to express complex low
level simfalations as behaviors of a higher level. The mapped behavior is much smaller and simpler.

RP4arenrns
David C. Luddiam and James Vera Okiapde: An Executable Arohenture Defiriftior Lanrguage Apr# 7,1993

David C. Luddharn and James Vera Event-Based Concepta and Language for System Aechiactre March 16,1993

Rapide.O.2 Langage and Tool-Set Overview Doug Bryan February. 1992

These and related p~apa awe avalable via anonymous 1 toI annastanford-edu. in AubARapide

270



pRaplde: Example
______________ . MySpealsr, CDrtuyer and Tape~lalyer wes

reglnsm) t0 ommaunuicate with the

T~p~.r. Ouft~n execution, Plany caused a Unser
- - m"quo" of events, each depending on

NO_ __ _ _ the previous, resulting In noles,

. Stop cnaused a liuer sequence of events
reaw"bi In alenee.

Aw~dR There ft no dependency between aniy
event In the trat sequence end any event

~ Ini the second s~equenc.

Poest Execution Aaio Giv en dtil piruwlsr execuon poee thle
system use hwolind Play bhiter- Slop.

pRaBpde: Example
In this example, paths fram Audicout events to Audioln event indicale commWunicationl fom CDPlayer
and TapePlayer to MySpeaker. So. they complete the deflitiion ofthis architectaur - since an archile-
ture definles howr components commnlTicate by means ot events.
Note that for this example. there are no tirn~ig constraints between any of the other evenits, which means
thereis a possible design law: A user could invoke Play then Stop, but still hear noise because the events
depending upon Stop could overtake the events depending upon Play.
Using mapped behavio (from complex by-level systems to simpler high-level systms) yields these ben-
ofts:

*Facilitates oxderstandiing. (One application of mappings reduced the event space Worom 8073
to 5.)

*The formal constraints ot high level architectaures which capture design requireenwts can be
automatically checked when low-level simulations are 'mapped ulf.

* Errors in the mapped behavior can be traced back.

V22



Architecture Based Reuse Tools: Summary

Features found in tools:
. easy access to large amlounts of knowledge

- problem space -domain specific semantics
- solution space - architecture

- assistance - person In the loop
- method accompanies tool
- rationales and "Wae-Ofts
. comiposition - componenits and horbnftal domains
- language and graphics oriented
- somle tools biase toward an architectural style

- rqulemeta~architecture, detailed design, code Intermingled
* evaluation through automated analysis and skmulaton
*source code generation

Future?:
. Integrated tool sets
- knowledge sacqusiion support
. cooperative design

-'-___

Architecure Based Reuse Tools
Itas dfficult odaw acoherentpicre mfrm this "Maystof toolsb'r -use architecture basd reuseas still
an emergin am but some of the trends areclam. One majo teow is the capture of IiaW amnourvis of
problemspae (domin specifccotext) endsol~ia space WIoViedg in osgfanizlo wide knowledge
bases which have use interlaces designe for amy browsing. They also provide sm ama fetgent
assistance to help apply that knowledge. There is stllt a tenio between formal and nformal
represeeations.Auiother majo tren Is the emphasis on cepturng raboneles. These ratilonales prwove
clues that promote conlormanca to an architecture.

Somea tools early wourk on the assumption cl an uncdertyin architecture style. Others allow the user to
follow thair own archiecture styl. Tha tools do not tend to limit themselves just to representing
ar~chiecure. They often include detailed design requirements andl coda.

It is cifficuit to predic winning trends. Tool integration will continua to beaa major goal. Tools that require a
lot of kowmledge need to sup~port acquisition "n stoag. Sinc desin. do not work alone on large
systems we shoWl see increasing support for cooperative collaboration.

274



Central Archive for Reusable
Defense Software

(CARDS)

Session V
CARDS Approach to

Reuse & Software Architecture

16 November 1993

Tft pap iniaitioafy loft bla*.

276



Roadmap for this Session

or ARS eledf .Aariltoka Task fortCARDS Scientific -• • oignzmoa tco melninoeun:
•~~~~ " Damrn on olwmAdte~

Rep noloo

CARDS Engineering an

CARDS T nstion-to-Practim e •

q77

Presentation Overview

During this portion of te semner, the CARDS approeh to Domain Engineering acites as tw relate to
soltware arcitecturee wl be discussed.

CARDS Phase 1 fomclsd an the mechric of Domain Enoineering activities, making we the intastruc-
tuae hardware and softwear and Ubraly modelM processes function correctly.

During Phase 2. CARDS foumsed n refiring the processes of and developing prototype fools for domain
specific component qualification and system composition.
For Phase 3. the CARDS locis son awhitectunm An Arc•itecture Task Force (ATF) was constituted with
the goal of deteminio the best processes for capturing and representing arclitecture information in the
lbrmy fmewwok.
Througlout all the phases, CARDS has documented and transferred the information though its formal de-

oerables and fmncisOg eforts.

278



Architecture Task Force Context & Goals
No" IM ATF Goals

_• Formalize the CARDS modeling
approach for software architeo.

ImIter..ied tures

y"40" - facilitate franchise
Implementations

- basis for reuse tools

VAPM - SAN-- Gather and synthesize Inforna-
tion for:

- Reuse Adoption Handbooks
- Evaluation of current

technologies (e.g. UNAS,
KAPTUR, etc.)

- Architecture Seminar &
Workshop

Architecture Task Force Context & Goals

CARDS has: 1) Basic technology, model basn with different views of the knowledge; tools (e.g. browser,
conposer, qualfier) that work off the base and 2) Process Ior certifying components for a domain (see later
slides) and modeing the qualification information.

CARDS needs: 1) rGood" Sotware Architecture Representation (SAR), and 2) Semantics for the imegra-

tion of multiple arcdtecture views.

Consideations:
"* What abstractions re needed to support:

- automated component qualification and

- system omposition?
"* What information, technology Is needed to suppoul refinement and composilo processes;

system design and analysis processes; prcurement, etc.?

"* What technologies are avaable for ardolecurH-cenic muse?

. how do rdiferent technologies -f4?"

-what are the invariants which allow representation and tooling divesity.

"* What approach should CARDS adopt to

- support systematic modeling without requring an advanced degree in A?

- provide a conventional, non-Al inleuface to the CARDS model base?t2 0
. u • I-I II I IIuI I



Approach: 0DM for Software Arch itecture Representations
DAP~aMNM(rTaled0M)

M EMMODELMINGMAT

etCI \d Mea Sa asee eAMpMR Use MR a

setmLia Doan_ Uhdmt mio

Data Sowoe Mtrs

Gomt Tradeol!fM

As61%et Tye Vwa%.

Approach: 0DM# for Software Architecture Representations
O.Iudzeion Domain Model 1ing (ODNQ is a STARS Dowuin Engineering methodology. 0DM is besed on col-
laborativ. team-beasd modeling involving an the Istakheholders of doe doumain. 0DM provides the ability 0 amap
points of commionarifty and diflerence without trying to work Or resolve altematives too rapidly. There is methodI-
ology support to model aitemative %iws0 theff same mbnurmtio. 0DM views the domain as the eftined scope
of reum.

0DM has two dislinct phases. descriptive modeling in which commnonalities and differences are modeled, and
a presciriptive phase where the modeling represents decisions and commilimentS to tunctionality to be Supported
and expresses the range of variability
Note: 0DM presumes the definition 01 domina put forward by kango & Prieto Diaz tha says: "A body of01 ii-
mation is considered a probilemn domain iff.

"* Deep or comprehensive relationships are known or suspected with respect to swoe class of
problems

"* There isa commumnity tha has a stake (that is, staleholders) in solvng the problems
"* The communuity seeks softwar intensive solutions to these problems; and
"* The comrmunity has access to knowledge that can be applied to solving prod~em
"* Andl Software Archltectures its every one of their criteria.

References

Mark Sirnos, Q==*ztuml Dw~adoin bg. STARS Technical Report~ Unisys Corporation.

Guillermo Arango. PrieWoDiaz, R., -Domain Analysis Concepts and Research Directions," in Domain Analysis
andi Systems; Modeling. IEEE Computer Society Press. 1991. ISBN 0-8186-8996-X.



Why ODM? A Documentable Survey & Synthesis Method

• Domain Lexicon Wt y W W t to be

Supports 1"We"10y

* Domain Intensional Definition Weed on ebsemauot, eowmm moeMin an whet you can am
C Domain Extensional Definition

exemplar set Aflows CARDS to adopt a "Dan? ilum He"

- representative set

* Domain Stakeholder Model 1- --X
" Domain Genealogy Model sene

• Domain Interconnection Model M T cel'

Why ODM? A Documentable Survey & Synthesis Method

The desrptive phase o( ODM is inended to 0ocus th analyst on descrbing what the system(s) is and dir.
courages "rathive" enhancements and personal bias (Otis s left to th prescripive phase). Hence, obser-
vation of exemplars in ie domain of armysis is toxsed on what exists and what can be seen. So rather
tharying to observe and synhsize al at once, irnprtial observation allos an ot*ective view o1 he0 do-
main exemflaws. For CARDS, this approach is attractve insoar as we can colled as much information about

software architechue representations and not have 1o try to re-invent, or invent on or own representation.

284



Why 0DM? A Documentable Survey & Synthesis Method
Oqpulamm DewAft Mmdekq MMle a STARS Owmen F gi sIk metwflog. wu selecte&W aftd iwd deteniwilon
CAIM saft -w~eam mFac Wup eede (BAR). Thu Ocmbi@Faces(OP) meprelead. an wumoted b88cgrqhy cor-

bboftwl eadOmabi deilim. - &M fo In" GMleli wknim-loy A represenbbon b mihdwd in to GAR 0~. kb bse desig
4 1 1 lon tr at aItW esoe auaab @ aofI audltiaed . A uupmesenteon b not bwahedtc in to MR daIn Uk %*A" pi-

msiy n mquimeid~tuWdblddu~wVor stggmu
int..lende Dumbll - Samnple BARS I , I I Me E~mrqbr (Cos) st: KAKPI UR;WAWSALEBo Object Cijuitid Declip;
& IuuIu. V, Rpldu ULEAN4A QAD..4 Sm 1 1u: Gbien & WNUmom daI..7@4mbhSi ssym; Courtar wat seqJwsenwa ec-

to beub for Iv dmumrtwe moda I4 dAR beabama Thuee awd p- eemnek W at b * KAPlUR; UNASIAAM Gomatji & Show eMun-
any of wratbvW atylme; R0614; p- Rapids:; LLEANNA; 0C0SNM0
Daela. Uwbheliar Mmii FrwecIdu coanletof how an GAR le ieclad fo talus 4 pucpbo in a msaft, worgu~Lbn The rmeg tech.
=Ai~pv~iwdevlopaAmokom ft &AR; develop bole WO;peiu balm*og Vorieliom 7 Th in twmw pmeeme "

doanaln p Aal,omazttee 0S nmBRmdq eb s canupaneft bond anftm DUSk The applasimwgua
tn"a Ow0GM mid bole Io buknabubin myebmna
Daemlle Geawagy MNoa pwkldu hbmWtce bIrdmctmia an ft clwelopauut of fmdt m (smeU bIndusmwve modaeuo.
Desedn - - -nas-- MRdal eIem ftem ldef -ee dtm , @4 tan and reatud doanek.
Doeslpll. NMedal boxtues @4 em manualmr of to repmaenmleve wet moee u~h*Aely in RLF. These foeauresem an en eyiuue
alzedl No a preamiptlu model.I Vil c.aase I% pirseem~ie moe 1 1 sa Me c e chbaoawe represenatilon PAR).

Requlrubve s ler thelPreauolpva Moeda (SAR) mint bollifle arcdbcawse-**lcrouse; must represemn moat cOeolare vote.
tactwue muFa aqpdntuavcepin of uwemetn; must an"t c01ormpni penquldiceon; mint be encodehle in STARSRse
Lbrar Fmmuwork (FLF).

us$

A --------



A TF Summary and Status
* Domain Definition and Scope:

- first step In formalizing the CARDS modeling approach
. provides technical Input to:

- Architecture and Reuse Seminar
- Reuse Adoption Handbooks
- Evaluation of UNAS and other similar technologies

* Descriptive modeling In progress

* Plans
- Complete ODM process on SAR domain
- Develop explanatory examples
. Use SAR on to describe real systems

287

A TF Summary and Status

To date, the CARDS Architecture Task Force has completed the Domain Definition and Scope for the soft-
ware architecture representation domain. Early resuts of this work are being presented at this seminar and
workshop and is also input to the CARDS Reuse Adoption Handbooks, to our tools evaluation, and to our
domain engineering activilies in the Comnmand Center domain.

Descriptive modeling of the domain of software architecture is in progress. In addition to the coordination
during this seminar, CARDS is in contact with numerous reuse organizations. The CARDS program wel-

sbmes the opportunity to coliabomte with interested DoD, academic and industry partners.

The ATF plans to complete the ODM process on SAR domain, develop explanatory examples and make
the results part of the CARDS operational library.

268

--- --- -oll ----- .il ll .ill .m .I .......



Roadmap for this Session

CARDS Sclnific- AfthROCOM Tusk POre

orCARDS Engineering -

CARDS Transition-to-Practice -p- : k9

no



A Context for a Model-Based Approach to Reuse
"• conept OIf Umy sOslamur vsW

" compornennd areda
F FAnewarng j * dzedtar amro =Wd retrievall of

(stit mumitimon) (dedm remianen bidldvdud reusable componerdsI . N ah Vellope• , 4MO e t~o rth
-~~ mechantusm (relaftnal)

Comonnt Model wesloiSs: pu.swfwa on lose
Okted 0on~x hioion

C = tpa nttd Mod .-b•e - GrqsdNd fr lWo" O ae pIRI&of
ure brmes do-I modelsL .. • '- knoweldge rqxowo tfn and

DI ouaia Doman 1 - weulme: hard o build i get buy-n
Indepmndent Spedfcu

" Thew 9 pprowhes are complemonmiry

- need models Wd components
- "oertllcatlonW vs. mqu kflomon"

291

-AM.
A Context for a Model-Based Approach to Reuse

CARDS represents an alternative technology approach to reuse libraies, one which is more locused on
describing the context of components (their intenrelationships and their relationships to design, require-
mnies-i.e., a domain model and an ardocture). We have found it useful to distinguish two classes of
reuse: a model-besed approach, and a oomponnt-based approach. The model-based approach
(CARDS) pursued by CARDS attempts to capture domain knowledge as formal models, and attempts to
use this encoded knowledge to automate reum through the use of knowledge-based assistants. tis also
possible to consider model-besed approaches based on formal methods.

Note that comnponent-besed libraries can be domain-specilic or domaun-independent, while model-based
hbaries lend to be domain-spedcif.

Also note that these approaches are complementary. Model-based libraries need components to work,
while component-based libraries could develop lage component popultions in anticipation of enooding
knowledge about their use in various contexts,

Examples of component-based libraries: STARS/ASSET, DISNDSRS

Examples of model-based libraries: AT&T LaSSIE, CARDS. NASANKAPTUR.

292



Mlodel-Based Reuse:, Certification and Qualification

What doperaIt do us whaictr do tn (coute? t)
-hUVqM kft? FORuu~. InAtt .U wa wyI tueCNE

=t- ' -dIr ___
Model-Based Reuse Certification ad uliiato

Wbllep C eitica on nwsus Wi hlmthe godeso o ponent s ma fohr geeot kf t heion (daelcins ofa
aomponemti aIraomyproviest ssumnc thtf~ opnn ssiable for d (f orm)ai n d

ThMoam ha opoet-ae admoe-ased Ro s :C reusei brarie plasnd obctsisfundamental t

fremn. hIn a component-based approach, toe emphasis on components hin the library focus on whatr the
component is and how goood" is iL This approach serves as a sold foundation in developing a rich and
powetU classilicetion scheme for equating -whaltom component iW to "where to find ir allowiing the de-
velopment of sophisticated mechahiums to search and retmsv components matching the search antena.

In a model-based approach the fwou as mom on how the component fits in the applicationi domain for
which Nit s intended to be measd. In this approach the emphasis is on 'what uses irand VWha does it use"
which isan inten to preserve some or most of mhe context information lost in component-based approach-
es. Additiona. me model -base approach emphasizes on the "when" and "Wh a component is used in
the application domain whtere me intent is to tie me operational context or requirements for a components
use. This approach serves as a foundation for semantic search classification schemes which relate how a
component is used to where to find ir.
Whil CARDS Librarf acher to a modeil-based paraigo in support of domarrm-pefifc reuse, CARDS
believes that component- and model-based approaches are complementary, not diametrical.

294



Genealogy of CARDS Qualification Process

focusCAD

certificatie Librarie

Genelogy--NI ofCRD ualificationPrcs
ThecADqus lfcto ASSET wP yteie rmPRS.ASTadDR RAID)SMitcto

prcess n rtne t ti ARS dmoispcfi u Pproachs Proreuse

tha ceticaton Indqaiticationsoldpa b m hasemntocmpetsoreueuries.

Cemlebarly, , a comonet-ased ibASSE may~c ntben so interste mothe doan compnnts, tate garcomponento
Iars Inene tooerati o hoefication dowoeualsets. not hAveS Warole H(whctever ito woculd boel concefve form

ae modpuel-bse qubalyt oal goecification IretdTeCRSsQuesifwhein qPrlifyss aecompnienth corpemnar domain

296

~II IN ~



Qualification Process

COMMON METRIaS S slw Iwa rm

QualificatonlProces
LFrAR QuaNfcatOn hm hai odoanriea dgnecactctr.oreifcaonteem

ph s Is ongnrlchrcescssc srealt.rnitiailtadpotbVy
The ~fiabon poces As devlopdfrrte oninn etrdmibta pial oohrvr

tica dominswithlare grbie COT~GOT~iuic dmai comonets.Thecmoetcassrpe
senthorzontl driais. he ualiicaion esuts ae mdel d in lF Nds e iNO teqaiicto ol

systemTAIO cops!oito.Eautinrprsaeas vilbei h ADtbay
Disig te Ientfict~onphae alis ofpotntia prducs uitale or te dmai Iscomledandlionfr

maio rqird arpodctsceinga baie.DrngSrein h a c oetilpoutsapir

FormQainao thea emehassre copnns anant h domain ft and generic architectu Fre (ie.te fiotrm, the and
functioni) and aredvdd t opnentl cactrsisuconastrelabiints. marcintetalcnrain tsiit , and iorab l emnttonco.
sTheraints Doatin criteria ware detelopned for tea coimpondentcas hrizna domain),idi andliseleto ted dor-
tcldmains withn marged craitnca foretSIcalp domain compoandnenter. CrTheriomonsorest iclude: reprA
Commnd Ceiznter Design Theqandbcatoo n S resorts. Commodeen Catted. mseasurte domaifiain ine Wndn
ssemcrpoMdEvaluation rfeelailtpantiablty, ure alsoaatitylprableinty, CAnDS costar.

Durig le kwdWAMM has a istof otenialprouct sutabl fo 11e dmai is ompledand298



QualfficatIon and Architecture

improvements

Amhe (ue~g rcostalnfits) o

feedback
(e.g. better designs)

Qualification and Architecture

momi as an kemrestorg Owedeperifency between architecture andc qualiflcmlion, which can be expressed
asa positie ftedeeck loop.

Architecture Refinemrent can be thouight of as addressinig three aspects of arctdlscttme: 1) the theciry of
stoftwar architecur (representation. evahation, processes. etc.); 2) a specific application architecturme/-
design; and 3) fme manner in which CARDS represents the application ardhilecture in the CARDS library.
As a resul of undergoing quafifcation efforts, feedback can oeur~

Architectur Theory: better understanding of the evaluation of non-f wctionai characteristic of sofware
architectures.

Appicaton Design: a tuned design which expresses more trade-off kiforniation regarifing One selection of
components

SAR: a tuned representation which reflect advances Mn theory and captur of new and Clkdiffern lns of
trade-oft information.

3W0



Model-Based Approach to Reuse

*Model comboof inluatf
- ab t VedoMMaIM
- abWOnt cieamponeeii

*am aon mpia of domaMn prixdocft11111111sippait
*reuse at all-V lu of

-sstm W5U MwnaedNu c~cb

nW 0 ip n P- 10"MSigal

OME modeing

- nodue A s l -Fuo1

- exper "SUMn Shellis

Model-Based Approach to Reuse

The CARDS progam huB adopleda a mdel-based approach to developing reus technoclogie Morm ape-
cificaily. to be effective, our approach is to deorm our library model in the context 01a domain h"tialy Corn-
mend Centers Ihis slide depicts the architecture for a domain specikc model-Ibased, reuse librury.

The library store "wuzuhouseB the components stored in the ibray. The library model, or domaein model,
captures the products of domaein arnlyis, and defines the, relationhips between the components specific
toa particular domain. Reuse tools, which levrage the iloniaton,111 and relationships encoded inthe library
model to support a number of services available to CARDS library usesrs.

The domain model gives usa, formal encoding of the relationships between tie requirenesus arcltedaure,
and knplemnftaton The encoding can beomea-i the basls form a brary aramework in which to buil applica-
tiat. to leverage thiose rlationships arid perform a variety di services.This is vitally inpoitan in post-de-
ploymnent maintenance as those hinlafly Involved hi buidding the domain mode. definting toe system
archilectuse, and buidingoth implementation are most Wely niot the individuals thst will be mddng mod-
ficatirms to that system fttuhout its lie cycle.

The focus of the dommi model in a domasin-specific reuse library a to bring together all the informaetion
that went into the architecture and imlmnainof the system. The library then becomes a vital tool in
understanding toe applicution domain being maintained.
Additionailly. CARDS has employed the STARS product. Reusability Ubrary Framework, (RLF). as the
modeling paradigm to support the encoding of the domain model and the applications which access that
Model.

302



Model-Based Approach to Reuse
/Lirary Model

Doan/qiee

-~ I' 11nstrain/ts
DIMm DmWA

miuyCC PmmuSUL)

WCe

Mode-BasdGAproahit ARdfeusue

els. ach dscrbng diferen kins of onstrints

i~~~~~~~~~~~ mplementation sc stePIM eei omn etrAcietr OC) n
* lnV~ementtion onstrants- hoseConstraintsimoe yspcfcCT 3 toorotar
wrappers~COT neddtoitgrtaeuecmpnnp

Maoexrese aeMonsrentlwicBapsetwe thpoae s t-ode ous

Th AD approach tonstbraint maodetweng reisohraeriets e adomarinecmodel in thu ms sofingy scebility
hot, e ac d spcnhific part ofnd t oe a rhistetre aitisfisprin ft eurmns

"* reon potront constraints m o isapcebethoeen arcimpsd yte DIA and Ciimnato etlngerhDesthe

"Th olo domain-spdecifireusens braiyn s -thos lcsrintmsea highoer byevsecis fi absrachtinreture ensa-
impetuesnsytesatind subssth as weo asI GnrcCompon Cnet.teis urciceassure (Cabit)o ecl adop

"res ora plecrifiatcdom stain. s-toecntansipsdb aseifcC 3to rsfwr

Asigoicn benefits are ntacnshieve byp focuingen mhodlbsed approacdocatr teachtcurn
" aoainconstraints top moeteacbeturvaong avouiding thatnd rtencyu of erosio axnd drift.iit

how abl R pecit pate* Sof the arkdnlecur (R s atsisM)in f eurmns

" comnmucito con-istraint1s)mpbtenade~ n mlmr~lo ealn o h



Model-Based Approach to Reuse
/ Ubrazy Model

Doan/qiefe

KAM C~~bvlnt

- ' -___- DI~
ModelBase Apraht Ces

Thisaid prvids amor relisic iewof her CADS eosology A moingwth resetodma-
specficmuselibaris. Te Cmman Ceterdoman i rawhnl doainut ohrdmis r lmd

Thstr e esetosaedsgndt prt n n oanmdl

Id ntgraio. he ysemcomostio aplcatonwo~ b eiciin iputfrm he ibarytsr n ode t

wil~oelBae applyac to pot-elomntsep

paT nayis antprvde copoen realistica~ion appliCAtion Thechanoge mataayis mvnwihAsplicailonbiton th
allocaion constirarint. neton Commad aseschnges in isqourmenials onak btthe arcitectare. Fiheri n he
composione ourtraem ntwools we d~i essge toprthe on acy doir moanesln.eacietueo h ipe
Thenfrtprton.thpe ompnnrulfcto toolADSC wmrid ae olso thvae Sythem compositiOn constraintnetports top
idsntggeatin aThesysem componentsion amplemenation weftnb adaptine minptfrmtenance srinorert
Also knpeonant to Mote aout rathisnsld isththrneisnot oenlers library storuefo Commadel Centerand an-
ionhejunc tiore with the nexart detomkallow ather eahlbaystmodlrfrnehs componiinapicto oqenytose forth
stor which areun oulfiedand aeplicable to is'por doautwomtid bepoito v d aeprothatyp domai m. whiho-
shareg the en crrptof idtabas manpiagement isysrgtem wouldedevbothpminto thae. Isam computtoneal thdel

libraary sewish satifyth co nsrtrqaliiaiont aplcacedon. ThDhagBMWaayssapks. ul a h
alloatin cnstaintnetodcwoud sem cangs; n rquieine onthearciteture Futhe. a th



System Composition

Model of

""netoi User

o-Generic
Anititclure

System Composition

The objetive of system composition is to provide comman center Nbrary users with toolt to automate the
comnposition of new command centers, or portions thereof, bassed on user reqlunements from components
in the Kira" model. The approach is to apply user input to the library model to produce prototype demon-
strations of systems, assist users in the decision nuidn process of Wuilding; new systems, and when pos-
sable, provide users with the actual software to build them.

This slide provides a top level view of the system composition appication. There are three inputs to the
'System Composer": a model of the Command Center Lbray, WWIge system constraints elicited from the
user. and a rule-base for system composition and heuristics for building the systm. The outputs of the
"sytm composition tool are systemn demonstrations and composed systems (or portions of a system).

The System Composition Tool prototype has provided a reference for what we expect out of a software
architecture representation, that is what are the products a software architecture should be help" to pro-
duce.

308



Roadmaop for this Session

CARDS Sclenitift An*&I-l"Tftkf

CARDS Englnwering

ra CARDS Transfflon-to-PracticeFrnhhn

3"



CARDS Tech Transfer in Practice

Law

7)ubvng end EdUMutMi

311

CARDS Tech Transfer in Practice

The rectanos in Oft skle irepresent the CARDS Phase 3 projec areas and how they inteiract. Notice that
Trairing and Education span ow enumr project CARDS contact with the Reus Commrunity affects the oth-
er tecnical projects: Domain Engineering. Ubrary Develoipment mnd Franchise Concepts. The processes
and products produced by thesei groups is then varisfeared to Iranchis Ouanizatioras wishin to establish
rmus capabiltis

312



CARDS Tech Transfer Approach

r~a AV& O*iiSiiI

OA~wr ~bve rkuw o

d~clf-evdi Hanookkp

C. ndmaonynf mo e... o sHadbo

313

CARDS Tech Transfer Approach

CARDS has IWo ash avenues tor transfer of technical inomation. the Handbooks and Franchising ectiv-

The hiandboolis include: Engineering Handbook, Libray Operations Porkles and Procedures. Tehnicel
Concepts Documient, Acquisition Handbook, Direction Level Handbook, Cornponent and Tool Devellopers
Handbook CARDS is also developin Model Contracts/Agreemnents and is conductin market Studies.

CARDS rouse support services are available to Government orgfakniz&os Those services incude uinple-
mentation of fth CARDS blueprint according to the Handbooks and CARDS Franchise Plan.

314



The Franchise Approach to DoD-wide Reuse

r~~i~i i I *CARDS soek to creite pemlnanently
* estabIMshed raum caplhillites within DoD

olmarlmdons (Ile., flwinchisee")

R ainciseu Pion Is CARDS tIM to apply the
______ _____reuse btuepdffl to DoD orgulhedons

Once 48112Mlahed, ftranchss may creuls,
manige mand suppon use of damabk.epecifti

CAROB etaueh F she d oped reum capabtlmes
Row*al become part of a g"W DoD rouse

* Simri * wldlewe *t uprmdItgae es

OWlt~nr 1iituostzto Processad ritlinires

ThFachs Aproc to DoDwidle oReuseaios
The ~~ a CAleprocvotchooytanfrku e lsa h avy emphsis gondetinvoleent betee

CARDandtechnoloy antiidopaiztin Pe~razoms. erfrt uhogIztosa rnhss

We voew Franchising as a process-feedback approach to incrementsi adoption of muse in the DoD. The
approach recognizes that reuse capablities (domain expertise, product linee, etc.) exist within 00) po--
uc and logistics centers, and therefore reus adoption must tae place within these organizations. Thus,
CARDS provides services to support an organization in adopting reuse, but. uitamatey. the reuse products
and experience generated fromn the use of reuse techinology and methods miust be generated by DoD or-
ganizations. CARDS views Franchising assa means to initiate the transition activity, and the channel the
resulting products and lessom*ris'naed into luture franchising activities.

Note that CARDS pnirt-developmsnt activities are not resricted to only one lind of oranization. We cur-
rently have development activities underway at the National Security Agency arid Air 4orce Sacramnento
Air Logistics Center. as well as with fth Air Force PRISM program (who serve thef domain experts and
prototype developers for the majoir elements of the CARDS library).

3£ a



Recognizing Franchlse-Unlque Context

guesier ~gupmgmm~ as raws
m~~i~t. 01l.0f the uUAW moaed/Poltk* VarIation

w* nxm - re~mlaemMrnecani

4wft- ed netw knaring palae(cupbm ls

Technadologyd~reOiltynnrtufeuogk
haleetmln pow ~ I ~ Wh

,I..( don" ~ ~ IKM 
conmase atwcsidevhalogy I

technology

317

Recognizing FranChisO-UnIque Context
To be sucosssli at technology Warnrlio, CARDS belheves it. isnevitble #at ognzonepem l nfC eeds
be addressed. Specifically. no two organizations am in a current stae of *rums mahdt (womee oae
wishes to define fti concept). nor do any two organizatons share the sameo cuhuro, business cornate or
strategic objectives hI sot iecoth ext W hir otich atechnologyas being tronstews siapes ieapproecta
taken to undert&" the transfer.

Our approach to franchising is based upon a flexible. 3-tieed analysis. consulting and pmokUdveokpmnt
proec modeL CARDS has developed mwateals to conduct organizational wnrtyss based upon organza-
hoionldevelopment principlesasftware; prcmmatursity principles. ruse; priniles andtechnlogy trns-
fer principes. These materials are intended to be used to amd in idenfft ,y go organiztion-sei
requiremenane for the development of a reuse kTn2lemnwtati plan. (Note: fthse matertets have onl recent-
ty been developed, and have not yet bean applied).
It i possible of coarse. to slst an organization in developng a reus knplMsnwtken plan-an we have
provided services to the Air Force to do so in one inslance-wihioul having crested r an ogrganzatona pn.o
fie. While CARDS beheves tha ton nuy muke the remse nimplemeato plan less etlecove, (or at kmeat
incrase the Wlceioo tha the plan wil be ims than opimal). it is somnetimres necessary to accept such
planning imitationsinthe nuns of nsdg even sanu progress in initiaing orgarization and business prac-
tice changes to support rems.
Finmly. thee is also scope for inserting rouse techniques into an organzatxio at the Vass roots level
through dKec prolotype developmentl efforts with organizations.

318



CARDS Team Members

I CARDS Is managed by ESC/AVS
Mr. Robert Lencewlcz, Program Manager (617) 377-9369

Unisys Corporation Is the prime contractor

Subconltctors represent a highly diverse and skilled team
DSD Laboratories
Electronic Warfare Associates

Azimuth
DN American
Galaxy Global Corporation
Strictly Business Computer Systems, Inc.

HGO Technology, Inc.
AETech Inc.

319

Ttfs pegs intenftinaly left blai*

320

S... .... •• -; • '..• .,. . -.-;• ,;'..' ,



S 1 hwmIaIt~ session V SeSSi on V0i

Mmimdwurdi Uw -tnkoo

CARDS PmpWdl of aw Zainlooka
= -a,* ei mo OWU T n

0 46

SusessloIlV

.U L

Am~otr 1!NAS

A .6ci.Tylo KAPgU

-Teda&aid

cc -. EAhum



Central Archive for Reusable
Defense Software

(CARDS)

Software Architecture Seminar
16 November 1993

Panel Discussion

.,...L..
Panel Discussion

Architectures in Practice

Mr. T. F. "Skip" Saunders, Mitre Corporation

Mr. Hans Polzer, Unisys Corporation

Mr. Stan Levine, US Army Communications
Electronics Command (CECOM)

Capt Frederick Swartz, Training System Program Office, ASC/YTE

323

J im, , , , .. . . . . . .. . . . . .



Views on Architecture and
Reuse

T. F. Saundws

16-27 Nov 93

MITRE

Outline

"* Goals:
Interoperability, Changeability, Cost Effectiveness

"* Views on Architecture

"* Program Management Perspectives for Reuse

"* Acquisition management of Architectures -
- A strategy to promote Reuse

- A strategy dependent on "Popular" Standards

"* Interoperabllity

MI3TRE

325



Emerging interest in "Architecture"

"* Driven by desire for.
- more changeability- "vertical" flexibility
- more lntaropeublly - "horzontal" flexibility
- cheaper development - commercial product exploitation

"* Technical solution Is (and has been for a long time) envisioned
(but not proven) to be associated with technology that Is well
ordered (Le. well structured, modular,etc.)

- Vertical flexibility nomes from framework based system structure
"* "open" standards for components within the system
"* mIx of propdetay and nonpropristary products

- Horizontal flexibility cornea from standard protocols
"* "pen" protocole for exchanging bits
"* data element standardization for Interpreting the bits exchanged

ortrslators

- Commercial trends ar providing technology to support both verI
and horizontal flexibility

MITRE

325

"Open" Concepts -
An important distinction in definitions

* Open Systems:
- A system Is "open" If It has publicly known Interfaces such

that Its components may be treated as "black boxes"

- A system Is a "desirable open" system If the Interfaces are
supported and used by a wide variety of vendors

SNote., Publicly known * publicly owned,

Le. an open system may have proprietary components

s "Proprietary" allows financial reward for.
- achieving large market
- Improving products

- maintaining backward (or forward) compatibiil'y

AMTR

3277



Three Objectives for "Information
Architecture"

Changeability
(Vertca floiblity)

*f~ .m~•

V . ......... . .

.. ........... V neo erbit

Xz pHorkoa" erdaUly)
Cost to Afrac

and Schedule
(Commera-hM product Seekc High Caingoblifty

Low Coad & Short Doighty

. *

II I

Outline

"• Goals:
Interoperability, Changeability, Cost Effectiveness

"• Views on Architecture
"• Program Management Perspectives for Rouse
"• Acquisition management of Architectures -

- A strategy to promote Rouse

- A strategy dependent on "Popular" Standards
"• Interoperablilty

II

329

' , , , n uI I I



Popular definitions for "Architecture"
-Prta lst)

"* Organizational
- Functional - Mission tasks (subtasks) to be done
- Logical- Communications links between functional areas

- Physical - Resources used to execute functio

"* System
- Components - Major elements of system
- Connections - Unks between components
- Constraints - Environment & behavior bounds

"e Software
- Components - Major sw design relevant structures
- Connections - Data & control flow mechanisms

- Constraints - Perormance, construction rules & resources

MflE

330

Different Views of Architecture -
Academic View

Academic View

Components

Connections

Constraints

331



Different Views of Architecture -

Software Devds View

Academic Viw SW Developer's View

Compron -- Components

Connections -ctData Flow
Control Flow

Constraits Timing, eft
Layerng, stds, t
"NW/SW allocation

33M

Different Views of Architecture -
Software Developer's View (Notes continued)

AJTW

333



Different Views of Architecture -
Standard Protocol Comuniuaty View

Academic View SW Developes View

Components-- Components

Connections Data Flow
Control Flow

Constraints Timing, etc
Layering, stds, etc - ro Mle ecfhnical
HWISW allocation eferene

_____________Model

Standard Protocol View

3M4

Different Views of Architecture -
Government Standards Communnity View

conva"ft330



Different Views of Architecture -
Rapid Prototyping Community View

DifferetCView ofse Arhietuirement

Architecturesto ineeratinromuniyoie

software



Diferent Views of Architecture -
MksIO. Orgaalratioa's View

Mission Requirernents

DifferentP*npf Viwcfurhtetrm

nteroper Contro Fl W owWF

ClenGRWIWW #§TW

etc. W ]O"GI

331



Different Views of Architecture -
Sumnlr"

"* Observations
- There may be other views of architecture
- There Is no common nomenclature for describing

different aspects of architecture

"* Recommendation
- Widely recognized and accepted technique for

describing architectures Is needed to show
architectures to be:

"* Requested
"* Evaluated
" Preserved

'40

Outline

"a Goals:
Interoperability, Changeability, Cost Effectiveness

"e Views on Architecture
"a Program Management Perspectives for Reuse
"a Acquisition management of Architectures -

- A strategy to promote Reuse
- A strategy dependent on "Popular" Standards

"* Interoperability

MITR3E

341



A Domain Managers Motivations -
Reusable products to fufill "corporate" perspective

Total Co• .•.•.UiI. IIN

of System comprldng Sir EE I
5 canmpoluUts ss'u--

Scaponnt ws omncmonet
II 

I

40

20

Cost for gne aagr parts 20-
barns by domain manager Ad "ow Mudsm

by COTS "endorte p)
12 3 45 5... N

Number of Different Systems
Oa can use common componsnts

342

A Program Managers Motivations -
The missing "corporatem perspecve

Generic

2. Total cost
"Nb of moff Systems conmprising

c components

404

1 2 3 4 Seii
30

Costs of Indivdual components
In the first syatem 2.cm. ~ums. ~ ni~u~w..additional cost for first version

sigA.* mW~ -d~m~).- to subsidize generic parts
10 - -7

1 2 345... N

Number of Different Systems that
could use common components

343



Outline

* Goals:
Interoperability, Changeability, Cost Effectiveness

s Views on Architecture
e Program Management Perspectives for Reuse
* Acquisition management of Architectures-

- A strategy to promote Reuse
- A strategy dependent on "Popular" Standards

* Interoperablllty

344

Current Acquisition Approach

Ioo% & , ,Au f I, I

0 6 10 1S 2
U34

Avi~hiS



Current Acquisition Experience

l I I "C M

I too

,aO-a

Trends in Software Development
The shift towards integrated rather than developed products

1.0
Developed Code

vs. eal Time System
Total coda

Command & Control

Systems
0.5

BUSIness kilo Systems

fOffice Automation
! Based systems

0.0 I

1970 1980 1990 2000

W47



Information System Architecture
A Spectrum of "Dull I-odes"

Full env *i-fgdown Mision damhhn oinentation

"9fltefnei, l"flX *Sun0S, "8untools,

ApeIkgn stendard standard standard standard

whd Mored CIU5III physimi En itervilon flIbty

and~ ~ m caiolinpfl OWlbm A-. C Mimiu B4.uudsii

~him~~. Md cost efud~fidsl I

348

Domain Specific Choices -
Mandatory vs. Enabling Standards

AppflSoafi tWi - w sppl AW&m b oempwm

349



Domain Specific Choices -
mandatory vs& Enabing Standards

efas-_ _ _

A=5

350



Leveraging Commercial Products -
The Promise of "Ope" & "Structured" Architected Systems

a o&- m.
ON ~ Unsatisfied

I.bWmo Reqali
DeW -- MISn In

IN

WfRE

Progressive Acquisition

u-Im

IN"

-Herdwar~fwave'

3S3



Future Acquisition Approach

S id

YMrM

" I U%

354

Outline

"* Goals:
Interoperability, Changeability, Cost Effectiveness

"* Views on Architecture
"* Program Management Perspectives for Reuse

"* Acquisition management of Architectures -
- A strategy to promote Reuse
- A strategy dependent on "Popular" Standards

"* Interoperability

355



Interoperability =
Intercouecthivty + Daot Compatibility

"* C41 systems must exchange Information for system
interoperability

"* Interoperability Implies
- Interconnection protocols allow systems to exchange bits
- Systems within a user community have same representations

for the same Information. or else a means for translatlng
between systems

"* Existing C41 systems send and receive messages

- directly when they have the same data standards and same
Internal definitions for data

- by using translators, external or Internal, when they do not
have the same Internal data representtIons

Data Element Format Mismatch -
Example

Prog A Prog B

You. htmU sumari "II~saeM GI Who?

uia( es 1 T11g I s-- m ool•, l-t. t-1Cad.

p-eso 0"" ft P -M40

3S7



Data Element Format Mismatch -
Exmoples

Suggestd Sbudaid
NUI' PW9 A Pma l PmIOC

=4 -WM d.
WTM~qm~ "W64

cub~a~*.i
4UTACGI IN

Imuadew S-O

- - SCA=b :

JaSACcS *otdWI

~TdN=bWMdftW a" S8404

Data Element Standardization
Connection complexity without standards - Universal Interoperability

359



- -

Data Element Standardization
Connection complexity with standards - Universal Interoperabiity

Data Element Standardization
Connection complexity with standards - Universal translator

361



BACKUP

MIM2

Program D Architecture -
Reusable components

a ~ ~ ~ ~~ £. AiCS WU ECM SyS~m

-n *ep ;

C- OMMM: wft

--on

DID. ~ ~ ~ ~ ~ ~ D Flow.______________



Technical Reference Model -
A Generic Version

LWa~n Uvw uithush~aoe.
(Hteogwm -qqwg -wh Boom", -u

1011ppl Iu.ed-eu too Iwo

- VA

Hsrgaom I

364

Technical Reference Model -
NLST Application Portability Profile

Application Software'.

s-Ue In o-rmlatlon- Cdommunication Iiternal Application

hInwface

~SecurityServices/SysternManagement Se~rvic es O

a oftw Plaof

User Data Storae Pafrs EtwfAnnwnt

P atormixtemaf -nvironment"

Naomi



Technical Reference Model -
DODnS

&WNWbOMVAWtwb

416V.= ooG

Wmkm pI

366

Technical Reference Model -
DISA Technical Reference Model for Information Management (v 1.3)

SI A catisons

G.i S.- I a ueun

ffiww, hI:tc 8-0PI)

am ___

Cmu g

5NOWmU :- -mf M

:6-wepknslag (fiB).*PCO

367



Technical Reference Model - The Profile
DISA TheDoD Prof'e of Standards (v 1.3)

S.. .... . ...... ... ............ A i ..

Mob"mom' mems O= Wm
*A XOO Oft "maw

Pm SmNOW •m m amil

S........... POI... ..... . . .... Z ... ...

S; -

CII IAIIM Ulm

MME

The "Building Codes"

Btudlivng ods Ihould be estabi~she to corpond to dithlaent dors ot detall
socdoormlmt( sapproopste) dependling uWon the =saope of the entlerprise"

Narrow Scope
A~Narrow Scopos2

111 11

_ * -. 9



How to Derive the "Building Codes"
CommecialAir Force Standards & COTS Product

CommercicSale Review -
of Practice Ammais -PoputIof SW AM*ldn

Tomt bed ez~are.mtreemlt n~eed
Prov~es Kmucd ~utkqen~pe wWd pwf=arma

Delnnne a JM ev~plo mlorewlU Wmpraevelan
standardsmib~ese

Provies Udati7n



CAMD AjbIMai Weikite

Mone: fth Archftectu EngIne

imm I%. Poker

UNiSYS

372

CARDS AgtiheoMo W~ombp

Money: the Differentlator

"* SCAWW W~UM Eng&W~fn

"* 5dm" Mf S Produeta

"* Speculauon iwmmll hwuu~tm

"* PoWc Sokakms warm Powaeftna

"* UNOl Mfoey vwar Bfg Money

UNISYS

373



CAPIS rddON WdU10

Architsctume: Saving Money

a* q P, Wtectwoapduwdi awin amb an ==wefut sys

- Wfw~p MINIM Wni 1euewPm
-redwm wfllfpwot hen eCtu tYN"

amp WOi~v -MO ha wum rnpmun aty

* 1001yetiauoiVwoti -~.byceape Wkubw~uy
- g4 Urswbuzh~ipA~fwv

I* h wainamw Rdowwwo

UNSYS
3.74

CAMD MSrhdI~ww Woelmha

The Money Test:

If it doesn't attract Investment beyond a single product
or system, It Isn't an architecture.

UNISYS

375



CARDS *,riOsaM weeushop

"* NAA TO.*bwDOg M uAO &NMmd-

-b aNo~ 4IWSi for bsa~c&V w~i a~cu

-Oiammagouet now bkim rm,
- Emff~o a*" of doW pMwwU dalekp awpiig

"* Mwm i hubs bdds a,.bR Nwh~bcaalAm

- Oftn A 5 1by dlpWm 1h OdWIDhig

- -wk -nppA*
"* Caiidimb wwizhpbae nw*yho .vwu~efng bmhiua"

* bus*byduibuwmbya'iglvmaawNacwtw netaoWl

UNISYS

376

CAMD Awhhbwum Wwbhap

Architectre Adoption:
A Positive Feedback Loop

"* 3muM pA'twblaUns in aeomptanco oflan archftammclan kulte a
PuSNiw bdbakk
- Percpiw olardVOMc" aticce~c is key
- Afdtsofwo',kbctwe rot ~hy lotnam~Uobwimm
- Mwkeloace accepowoc kmauses acewmaiuc reli 0adiptws
- Exty adlopsgam mwre Oiw late WVW3ef (as a n*)

"* Adap~on an..*efll unffllecononvc apmo Is aamtwfd

"* Amhlteatua adloption rsely based on teChniaml axsveltnc (eg: MSf00)

"* Ardwhlte must - onmw, be usefu (eg: MS Wklwoa)

UNISYS

3.77



Archtecture Adoption:
Otivi" Investment

0 Arelabotwe adgtton MOMal GOnmM&W bwbu mek
- Asa saWv

- deeAk wCrOM4001 10 * t Mie WkU*f
- -L~ systeum Ow ray an to ~auhs~

- -oc waft *a Aspuw

- As a Oxfon

- bwume naab um daw wes aed an AMe aowa

- aaftn aswbn N *a UtilOflw welVbd

- enhgoft asaffio'a' geeepvdaofa

* ttktwetbanonecongnl*ail bswesiktinirfa

* krsbWWoDnt i mAn ftW arhidwa MOW61 t bfta~mmbI

* huenunhi¶omm'li~cEm f~m 'UNISYS

379

CARDS AaIdmA.as Wmlrahop

Investiment Constraining Architecture

"* Change. In an arbchfecwoam constrained byhInestmmnt
- existOn cfformeft SWd system base

- bushkess models
- staN f rwnan

- WOO&ai 1001*

"* hirpovanoe of bec* wd conipauboly of now Intraabi cn eomowontsh

"*I himestment blinds organizatdo to need for now ard'oitneoa

"* Now saft le Mkoy rev to adot new achtlchoweu

"* Now architecture not likely to be adoptedffhIt sequinu &Wpe tAI

hnwabn~en!

"* Large compnl~ioes more likely sources oftnow, fhghkwsebent archnoh
- Requres management Wsion(s)'
- Laedisoewiay resource bas (dg u~oisyN

37~9



CARDS Ar~OMM Wftho

The Road to Barikruptcy

"* Byuanme hicnafogy mdhbusknata~cki maniMo ainhw &Wu

Nicab &bau camu~ o ~u

d Iiea=bltWtbnmthI SbdyMewguenw~

" O'" a e d~giIiinlm) nsdmIaeb hI I byeftz of

Iu ytom mwer lIsc dup afta wcom~ afte -1 -ow cwpmf

* i na S s" a n t m ~ W A n u a l , E m A h u

-bwdnofom&hlfl k*wasbhWgtmiwta fts

UNISYS

38D

CARDS Arebhsctm Wuksh"o

Mlanaging Architectre as a Business Process

"C OipnirAtMMood lu to manag am~whtuWms as an kftegrl pail oftthe
buaahespromsa
- conkimdszabl biimwstenms
- rm p xadm mn momes
- ca dt busm succes
- ca dosivoy an stuerpriae

"* Ormadktons moud to dus with mulupl archlbcturm &Wd Uwk

- WmiM4ng mi aVMig Ove scoe olspecilc afd~wfctwu
- pfav*V &7d nunamp tansion from one arcffemmADae noltw'

UNISYS

381



CANNl Aniseah -aUC
The urchboctrs pramesu needs to be masd. explicit:

* 0 n)
-I OW ars pradmoad on ard~wkn

-~~~O G6bmahww w~adhffO,

* hwbc~ I I.dobdwV

UNLSYS

332

CARDS ArchlgsckaaWrsWugWlo

Profiting from Arhfectuares

* Eetblbfh ftmul watabeaWm asesununt wtNW yow OWMphaU~n

0 AvOM proprfoliaqchlbscfm mlees you cntro Ohem

* Ewcurap gadopuow of favwb vihe whlitctwea throuh aggrssshr.

- am. notOvrcomi tohpw an levwag.m

-readt to waffwig sowns ady

UNiSYS

383



ARCH ITECTU RAL
DEVELOPMENTS

ARMY
COMMAND AND CONTROL SYSTEM

COMMON SOFTWARE PROGRAM

STANLEY H. LEVINE
DEPUTY PROJECT MANAGER

COMMON HARDWARE SOFTWARE

3u4

RAW..'W

L. A4 Ayeg5 V

3M3



ACCS COMMON SOFTWARE PROGRAM
A mAjor saftes rems kIdn ~tiveU oonskale oNIo projocs:

- Common ACCS Supor Software (CASS)
- Commo Appications (CA)

U36

CASS COMPONENTS

CASS PHILOSOPHY

*ATCCS LAYERED ARCHICTUcTJE PRoVIM A, FUNCTONAL FrpAEWORIMFOR CSCI DEFINITIONJE

*EACH LAVER IN THE ARCHrTECTURE REPRESENTS A LEVEL OF
ADSTRAC~ION TO THE LAYER IMMEDIATELY ABOVE

-REaUIREMENTS ARE ALLOCATED BY PROCESMiN FUNCTIO
NOT ALL. FUNCIONS NEE SE ACTIVE AT A GIVEN SPA NODE
DIFFERENICES IN SOFTWARE ARCHITCTURE DUE TO HOST HARDWARE ARE

IOLATED AT THE CASS LEVEL

3V7



A-rn~

APsC-INSa

OJPP~ rn c nAs

BLOWi
ONa -___E~

PwI- Iaig I-hnmtUNilIK ipu~~.,,1 e

HlldJ[.mat::J ?

ONY I 
I

Iowa=

3a9



ma N M -ammin

aic mmall *waco L eA
AM N U .@" NML~ Mmm

cromo " *O *

gl*inin Ii I ,*=

Kl~walum

CASS CODE SIZE ESTIMATES

CSCI LINES OF CODE
CSCI CX 1000)

SYSTEM SERVICES 1

SOLDIER-MACHINE INTERFACE 12

SYSTEM MANAGER 8

DATA MANAGER 10

MESSAGE HANDLER 16

COMMUNICATIONS 27_____

TOTAL 88

POaDUC1 MANAWMIN - CMaMbN 4hWIAME



i I IOg OTA

S~ CASSWG ORGANIZATION

m a

* DEFINE TOP-LEVEL CR55 ARCHITECTURE FUNCTIONSFTAR

* PREgPAFRE SOFTWARE REQUIREMENTS SPEC AND ADA
SPECIFICATIONS FO ThE rIC

SDETERMINE CASS STANDARDS AND METRICS, DEFINE ADA

BINDINGS, SELECT COUMOM APPLUCATIONS

GCAIR: BRUCE GRAY, CSE

CASS AIM E WORKING GROAUP

(ARCH393



F DIMethodology* w

I Is

CDT R Near Term Architecture Definition

I___ -, -. "-• s-_ ---• -

......... '.•[-.. . -. @.....".". .:."':.... .. "

395

.nr.

I mpR u -~ -t .•-, *spuu•

- - - tm~g•,mW1

SL • I I I

•rnm w InI v.1Iai /iiu



CDT ýObjedtive Archied 0r TRW~o

MIME=

ft-O ** ewmmoamm

LIMMLISM~

INS"
cow*

I I * -am

~4I as

a..=.



CDT Comparison of Near Term Arch with

Sb.u.d m..n, umour Iv.., n,., ,um,.m
mins oee C -nw

WNw NOWT 13 S 08C u9I VIASm 0
AMS" V2

F i W Tn 13 45 on tall Vem md mic ha @*wai
A * .e d V2 WOftis

curM a mes buww eft

010 1 01 y lISM VI OWNS I50rnU~gIwW
SV4 V4 nwft

I t-u LVOmm•. L3ttnmL, mo v

"qmows sus.

398

CDT Product Availability Issues R

"* Issue: MCS and AFATDS products appear to be the best match
for CASS requirements but they will not be available wben needed
to complete product evaluations within schedule

"* Resolution:
- Meet with MCS regarding Loral CSCIs and AFATDS to

develop workarounds (e.g., Beta Release draft
documentadion, etc.) for as many objects as posible

- Identify alternate products for ner term and develop plans
for upgrading CASS when AFATDS and MCS products
become available

399t3



CDT Acti vities R
ECDT and Status

Go~mop cAi

CDT ~ ~ ~~V. jw ACCS 4-ae rhtctur j7
SAAR M IdW*

ftIgem
IawTro-IoGEi

,d~w at ma a wp o

6~) _________to

PWI ob40O



T Acm hments (Continued) !!
Prouc Summary

-duald Emiwdd Sdocted

10%

(173 if

a,• law op.• IenmA

(33 (43 (13

1231 • 41 PNdlieU 12 SI

412

Si--i -i ---W

16 OFFl nflr IN

IM S N .1 ap W on.PA

_ L iI II[mmJ

4M3



jCDTj wA Objective Architecture f w
I -I

I Object, Orene Analsis

U _

-CDT liif Obec eelnhp an d Deenenies

- Good TWOli Design Mechanismn
"* OOA lumbalre

-0551BetWODGA endOOD

- Requires Addillonsi Techniques to Fully DepI Sem
r)p (0g., Processing 8equences, Data w Diagrams,

- Lack@ a GOod DecOMPOeuIo Technique
"• Documuaning Results of OOA Produces Large Documents

-- pM



• I Lonse Leaned

I Sof•tare Reuse

• e as Schedule Risk in Your Ponning When Using GFE

" Rigorou Product Evolstn Essentia

-EUn.Mi-I Immature Products
Reduce kinhUSton Risk

- Ensure MY Evaluatin Ctkd5 Met (Reqdruomentsr-N01 A--41M
"* SLOC: or nomber . o Ob*ect Are Not Accurate Measures of the

PorIng and Developmensft Effocrt Assacuated With a Release
0 46 It MiY M "U~ 5 lrgew =ctro

ame vurin X-e to WU to port
meud product from thw ICC to do ALSYS o4ler

- Sa Ob r Very Large, Some Aro Saell, and Some

• The Een wand Qulit of ni Documnestion of Products to be
Ported Has a 81ni44 cnt ispe On the Cog of Each elase

*~~~~0 RsnsensofPouct Developers to CDT Technical
Mus iosed Extent Product Developed With Naming

CMMoMnn and Coding Standards Affecwts CDT Prod•uvy

_ Software Reuse (continued)

CODT Resource Alocation
for Vi.2 MW,,olow

IThe extent and quality of the documentation of products to be
I ported has a significant impact on the cost of each release

-4W



CDT Lesons Leuinod,, ~COTrS Interfae ,

• CASS Developed 8V1W hisnm Presable to COTS 81W

-Prodl• bdqwendm
- po -n

- CAS l wmd COTS 81W hed aos Provie EA a 5W
Laysr Bufr *am COTS Proeuct Chlages

40B

GE AT=

FINAL APPROACH ORIGINAL APPROACH

CASS REQUIREMENTS DRIVEN MCS DESIGN DRIVEN
rED•wucGMCSFUHCT10NAfUTY. UMF. IIqMJENTA11ONPLEIUTyADPIFOAMAkOSFCASS

ATCCS MESSAGE PROCESSING MCS MESSAGE PROCESSING
inroms pnocOmmio OWw,(W KWme OF umaau NOtU WT 1WU

OBJECT ORIENTED FUNCTION DECOMPOSITION
LS Opt~laCU r I t AWTE M aTUTIANCI £ T TM3M1O0 CUM 081M18m
EXPLOIT MULTIPLE SOURCES RELY ON SINGLE SOURCE
s•uin , WK11 LIKELY TO To 9i0W OPn eonTWAin

ATCCS PRODUCT MANAGEMENT BFA PRODUCT MANAGEMENT
8UPpoM CA AIv UNoN111010O A NOOAL ma
CASS AS A TOOLKIT CASS AS A SINGLE ENTITY
qUppOM CABS AS A SiT OF oC CTSAT CAN UW 1104OIOk Y
ACCESS DISTRIBUTED PROCESSES PROCESSES IN A COMPUTER

I7 u



£008 COMMON SOFTWARE PROGRAM

DOCUMENTATION

410

CGASS INTER-SOFTWARE COMMUNICATIONS (ISC)
REQUIREMENTS DOCUMENT

*THE ISC REQUIREMENTS DOCUMENT ESTABLISHES A DISTRIBUTED
PROCESSING PARADIGM AND ARCHITECTURE FOR CASS

*THE CASS ISC IS ACCESSED BY MULTIPLE ADA PROGRAMS
(Potentially an Multiple Pfocessors) VIA ABSTRACT
INTERFACES DEFINED FOR.

-A LOWER-LEVEL DIRECT TRANSPORT INTERFACE (BCS)
-AN UPPER-LEVEL RPC INTERFACE 10I.Ivlbuted Servic*&d

*DEFINED BY THE CASS ARCHITECTURE WORKING GROUP IN 1989/
1990

*INCLUDES ADA PACKAGE SPECS THAT DEFINE THE BCS. BASED ON
THE AFATDS DESIGN

*REFERENCED AND BASELINED BY THE CASS SSS IN JUNE 1991
*UPCOMING REVISION PLANNED TO AMEND AIDA SPECS WITH NEW

AFATOS SCS DESIGN

---- 411



CASS COMPONENT BREAKOUT

412

A= COMMON OTWARE POGR

CASS ARCHITECTURE

- Io

* I

,IL r I IIII



CAll SUUSLA 2 IWMFwu umin3 m nama

Ff0 I 4bwb skotwm m"

GAS$ SUBLAWI Ipes) ,-

MOW -ok-
It *@ It

-f~ w a ft-rn

AW :=Ur se*es woo~

.41

ACSCMMON SOFwARE PROGRAM
CASS TOTAL LIVES OF CODE

L

E
s

01



Need for Interdependence

Impiumontatlon of a reuse strategy for a family
of systems/users requires more organizational
coordination and Interdependence, balancing
tw conflicting Interests of various develop.
ment and government organizations.

416

A Major Problem

Pressure imposed by developing the
reusable assets while the target projects
were already in development.

417



Lesson 1

Technically acceptable solutions were
found for every technical Issue.

Corollary: No solutions were found for
.tehnical problems that became political
Issues.

418

Lesson 2

Support from the highest management levels
makes a significant difference In the
Initiation of a reuse-oriented approach.

Corollary 1: Even small amounts of financial
and programmatic assistance will change the
attitude of the participants trying to deal with
the Implementation problems.

Corollary 2: Without the unified support at
the top, the Individual projects pursue their
own best Interest.

4|9



Lesson 3

Put the very best people that can be made
available on the job of requirements definition
and architecture description.
The two most Important characteristics for
these people are technical competence and the
ability to work as members of a team.

430

TECHNICAL ISSUES

1. Focus on the technical Issues Instead of the

programmatic and budgetary Issues

2. Work by consensus

3. Develop the requirements documents from
scratch In working groups with technical
representatives of all major users (developers)

421



422

SACOs coMMON SOFTWARE PROGRAM

LESSONS LEARNED
DDay to day management must be driven by an independent PM with
significant customer PM involvement.

* Common Software must have separate budget line not subject to
customer PM budget cuts and user priorities.

* The PEO must control and expedite top level requirements management
with full customer PM involvement.

0 Each PM's program must be tied to the common effort both In the
approval and the budget cycles,

* Use of common products and producing common products must be
added to a system's formal requirements and to a PM's formal mission.

* Do not use the common modules on a specific program's products

without first evaluating the robustness and reusability of the program,
architecture, and design.

423



STRUCTURAL MODELS IN PROPOSALS

FREDERICK J. SWARTZ
WRIGHT pArTERSON AFS OH

424

The Training System Program Office is a wing-level
organization singularly responsible for the planning,
contracting, designing, testing, and delivery of
sophisticated, multi-million dollar training aircraft and
aircrew/maintenance training devices and systems to
USAF frontline troops. Products enable USAF aircrews
and maintainers to train like they fight.

425



OUTLINE

History of Structural Models

Overview of Structural Models

Use of Structural Models In RFPs

426

Structural Modeling

" A Structural Model provides a high level
design

- structure: classes of containers for functionality
- coordination: captures coordination model which

specifies communications, synchronization and time
management

"* Ability of the architecture to leverage
development through structure

"* Reusable software architecture - a high level
embodiment of design decisions

477



STRUCTURAL MODELING
SlaqW~l • PrCWAW

Structural Modeling Addresses

•Development Cost
- simplifies and standardizes design
- provides ability to make decisions early In process

- minimizes assumptions built Into designs
- promotes reusability (architecture. design.mImlmentalons)

* Integration
- clear piture of how system is donstituted
- eary Integrsation harness provides complete model of

system
- allows substitution of rsal parts for models In Incremental

fashion
- reduced Integration time, fewer surprises

429



Structural Modeling Addresses

* Maintenance Cost
- rombusr under modilicetlon
- more easily understood by maintidners
- predictlabuy In cost and perormance
- well defined expectations ot structure, compolston. and

* Aircraft Currency
- close mapping to aircraft design
- well defined Interfcess to avionics components
- tolerance for date voids

4M0

STRUCTURAL MODELS IN
PROPOSALS

• Instructions to Offerer (ITO)
- Describe the structural Model(s)
- Demonstrate model(s) Is complete
- Describe how model(s) will be applied

* Statement-of-Work (SOW)
- Use object oriented methods
- Ada structural modeling
- SSR - architectural guidelines
- PDR - Incremental
- CDR - Incremental

431



STRUCTURAL MODELS IN
PROPOSALS

System Requirements Documents
- Modularity
- Maintainability
- P31

432

STRUCTURAL MODELS IN
PROPOSALS

" What else
- New reviews

"* Pre SRR - Architecture Guidelines &
SDP

"* Pre PDR - Structure Model Review I
" Pre CDR - Structure Model Review II

"* Guidebook
- SEl produced
- Part of bidder library

-White Paper on Structural Modeling

433



STRUCTURAL MODELS IN
PROPOSALS

SUMMARY

"* Structural model is still maturing

"* Based on Object Oriented methodology

* Very little specifics in ITO, SOW, and SRD

"• Evaluating approach based on:
- Risk
- Performance
- Ilities

"* Guidebook will give the basics

434

435



Central Archive for Reusable
Defense Software

(CARDS)

Software Architecture Workshop

16 November 1993

Architecture Forum Workshop - 17 November

Purpose:

• Explore the current practice of software architectures and software re-
use on actual projects

* Explore current research into architecture as a means of implementing
reuse

Overview:
"• Morning:

- Short presentations by practitioners and researchers on their current
work with architectures

"* Afternoon:

. Working session to Identify common problems In reuse
Implementation and develop a common approach to solutions

4437



Workshop Schedule 17 November

8:.0 AM Translaioning from research to practice - T. Saunders, Mitre

8:30 AM Architecture as the framework for realizing the benefits of reuse
- W. Tracz, IBM

8:45 AM Absaction and layering within software architectures
M M. Gerhard, ESL

9:00 AM Overview of DISA Software Reuse Domain Analysis
- D. Gary, DISA

9:15 AM Software Architecture, Reuse, and Maintenance
- Jim Baldo, Unisys

9:30 AM Break

9:45 AM The Object-Connection-Update Architecture
. Charles Plinta, ACCEL

Workshop Schedule 17 November- Continued

10:00 AM PRISM software architecture - P. Valdez, ESC/ENS

10:15 AM NSA Unified INFOSEC Architecture (UIA) - B. Koehler, DIRNSA

10:30 AM 9LV Mk3 shipboard C2 architecture. U. Olsson, CelslusTech
Systems

10:45 AM Architectures and the real world, based on the Army C2
common software program experience - S. Levine, Army

11:00 AM Break

11:15 AM Architectures In the CIS field -applying Christopher Alexander's
work - J. Bonine, Design Metrics Technology

11:30 AM 00-based architecture use at NUWC - S. Roodbeen, NUWC

11:45 AM Capturing domain knowledge at NTF - T. Gill, NFT/ENS

4N



Workshop Schedule 17 November - Continued

12:00 PM STARS deo= project architecture - G. Wickman, CECOM

12:15 PM The STARS Air Force Demo, Project. K. Spicer, SWSC/SMX

12:30 PM Lunch - 4th Floor Antechamber

1:30 PM Working Groups

4:30 PM Working Group Report

5:00 PM Wrap-up

440

Proposed Working Groups and Topics -17 November
*WO 1: Evaluailon said Measuremtent of Architectures

. Procursumnt Issues: ho can many proposed architectures be evaluated?

. design lssues What are the 'architecture-lsver" qualities which can sand should be
measured1?

* WO 2: Software Architecture Technobloess
-what wre the current and emergIng technoloIes for softwre architecture?
-where Is the "low hanging truir (ILe., easily attned but useful teholowgy)?

WO 3a: Software Architecture and Rouse
. what does It mean for an architecture to be mneusable7
- whastl Is dmm dfor product.Iine architectures to sustain a commercial componen t

prodder kidostry?
*WO 4: Software Architecture and Standaords

. what Is the relationship between architecture alid open op5tSium?
. what weareasu of architecture standardization, eog, -buldng codeS?"

*WO 5: Software Architecture and Strategic (Product-1ne) Planning
. where In the DoD should architectures be specilled? maintained? hnPlemented? What

are the pros/cons of varfous approaches?
. how can DoD architectures, If specified, be used preacrIIUvely In prcring systems

- --------



E-42



101

iKits
0 0

49.4

V 1111 41e11
* En

111i1 3 i~ti~ i
a 0e **

4C.0 g

* 0 0m
ong=:444

& carom



TheDOSSA Proces and Tool Tvos

bri :Modeling; Requirements ManaFMKen
811AMYASU" POIlcatlon Reflrnemait & Evoluton
So- .Repodskm Component Selection; Compnent Gewetuilon;

wwtValidantion; Corfiguraton Package Load, & Etwola.;

4A6

DSSA Lifecycle ''

PrototUnsatisfied
Simlaton . Apliatin ErrmptninAtiOnV

Monefnstssdl Architecure

Enaife eq~eet~Frrors. Adaptations Applicamoneti

Applcall on yste Appicaton Achisctur

Domai ~ LIApplication Engieerngents t ad
Syste7



DSSA - Tool Sourves

ii * MibiI momI
SIu **Ii -----

B $ 4



ari

04,

r1 Tr

451



432

-4) f

43 4

o 0

4) L4

.4)

4)4.

0 A 0 -

0)4

453



3
0 

To*8.im
El

+2

-� 

0
448.4

0

0 

4 
0

454

m
V

U 

bOoC) 
bO 

.0

+2 

04o 
WI

I., 

� 

WI

o 
�

U,

I-.

+2 

V

U

U,

U, 
0

I

6 
0 

0 
0 

0
S

455



I I 1 I II I

IjI

iitoo

456

4S7



,.MI|

ATMC~u,

Software Architecture Workshop
for the CARDS Community

November 17, 1993

J. Chris Commons and Mark Gerhard
ESL, Inc.
495 Java Drive
Sunnyvale, CA 940684510
(400) 73866-

chrls.commonsOsmtp.eol.€om
gedhardtOaJpo.seLcmu.@du

456

ESL What hs Architecture? R

" Architectures are 3 things
- Framework

- Behavior

- The basis for extension and customization

"* A consequence of a well defined framework is
predictable behavior

p-i • I I I I I



ESL D Specific Software
ATRWOONWvO Architectures (DSSA) )W

* Deals with sets of related problems
* Does not mean equivalent final solutions

- The same architectural framework
- Different piece parts that fit Into the framework for

different problems
- Different customizations on top of the architecture

* The architecture Is a subset of what's shipped
as a problem solution

- Customized to solve a problem

h4pD

ESL Current vs. Desired Reuse
AETRW CM"W Approaches -'W

* C, -ent reuse approaches just look at pieces
- i,,e structure and mindset of component

respositories Is that all components are combinable

* An approach is needed that considers
collection of pieces

- An "architecture oriented" mindset

- Emphasize the cooperation and coordination of
pieces

- Understanding the consequences of using groups
of pieces

SBehavior
- Resources considerations
- Pathological combinations

S-461



ESn. Reuse by Scavenging

A JJUNKYARD

car port
W "~RepOaltWly

Methodology: Scavenging

462

Current Reuse Process:
ATRWCW Scavenging

Extrct ompoentMore

parts Repository Glue" PointI ýE Solutions

A 'parts ortented" approach, Instead of
an "architecture oriented" approach.

463



IIlL De We I

* Interaction side effects often occur when
architectural components are arbitrarily
combined

- A "failure" of our abstraction technology
- Information about low level resources that will be

commltted in the course of providing a service Is
notovee

- We do not have a good mechanism to encapsulate
side effects or behavior effects of black box
components

E_ Reuse: Components vs. "_
A mw cammvFrameworks

- Reuse is not just components, repositories,
browsers

"* Reuse is really about:
- Generalization

- Layering

- Connectivity

- Non-point solutions

- Collectiv Behavior

"* We need to deal with:
- Generality and its cost

- Modularity and Its cost

- Shifting complexity, layering (abstraction), and
generalization from architecture byproducts to first
class concerns

4I



MSL Architectures oad Domains

MAdWWbU

466

ESL DSSA Development
ATMCMNN

A generalized approach for developing DSSA
Is difficult:
- Generality can only be obtained from collections of

specifics.
- Bottom up approach
- Factoring of commonality

3, Recurring functionality (Common modules)
- Framework or Infrastructure uniformity

4W7



EsL DSSA Development .2
ANWC~,y

Tradeoff between extensible framework or
parametrized problem-based architecture

- Framework example - spreadsheet
- parametrized problem-base example - MacinTax
- but Macinrax Is constructed via an Irteraction nil.

baen on top of a spreadsheet ornginel

Sq. U

465

ESL DSSA Development -3
A TRW cmupmny

9 SO: MOST important - DSSAs result from
recursive generation of successively more
abstract composite objects

- easily repeatable perceived behavior
- easily varying access to Internal sublayers

ax
Daba This Is a OSSA

This is a DSSA -

spreadsheet

and the whole pyramid Is also a DSSAI

I.~.. W



C nL 
Framesworks

All Frameworks are Architectures, but
not all Architectures are Frameworks

S..Extensions I
Nw

i Framework

An aidaing unwnwork with exintmslns }
can be a apeecif c pmoblan acluilon

or a new frwanwoddl

470

471



Domain
Engineering

Deorah Gu7 (DJArrXMD

472

~~ Overall Concept

*Domain Engineering is the systematic
identificaition of commonalitles among a group of
related software system

*Domain Engineering is composed of three major
parts:

- Domain Analysis
- Domain Design
- Domain Implementation

473



,• Domain Engineering-
The Products... Domain Model

"* Object Orieted Domain Model
"* Identifies Common Software Objects And

Requirements For A Family Of Systems

I*Dom&i Roq~mnof Dianpms

" ObjeWK~uSpecificaiamm

'47

Products of Domain Design

> Domain Specific Software Architecture (DSSA)
A specifiatian for assemblage of softwae components that iU:
"* Specialized for a piwlkular ci of Uks (domaW),
"* Gmemiized for effective w -crss &ia dumm
"• Composed in a aindiud wcmme (Iopolo),
" Effective for buldn msomfuls aplimcoho
"* Mimally provide, a ftamework for qaspfy ie majdo

Comainems End doh imefu di Satiffy the ItquIWL IaAIP

awzbject Dsign speir"cbmj

> Domain Design Classification Terms

475



High-Level DSSA Diagram

DSSA - Execution Thread ora =-Order RequueM

RLMAILSU477



Class/Object Design Specificatior - Templrie

r ChmW bJý ct Nam e: 
Comwxa

b. (if *Wrtedftvm at m.EWia. ,nVUz CADMmKzi

Smurcs): mw(SuwKpAW -& -Vf dbjma~hm pim
th& d'oP~ Pin1.Of "NW-uwmm

A~wdapam Raquirmmuts (Variani): -ffdcdo.M#sbpmt ta
4w &4"wC-pwwA):.bwdibje

*Remu GuW=da mcr 6aJ-

472

Class/Object Design
Specification -Template (cont)

Connectio: pro:

Mamuqe .*~ ~Seurce*): am>
Tuuim> t bay % Dhiaub Mode:

rfxnkerna Iteae:ahuh Ada.pftd..: -ao

*State Spacer m'iunumwmd. mvn eg mng

Dewipwon: *

Adtapiatl: <text>
Traceability: Raim~ oem

*Doma to Deailed DeigalCode: Tradeolya. <ft>
cwyUkuia mui f~g.. Pl-kalge

* p do Dakhn Model):

479



The Laws 4( Nature, the Lost Wisdom of the ancients,
and the

Common Sense of Planning:

Software Architecture, Reuse, and Maintenance

Jams Bald. Jr.

17 Novmber l3

CARDS Arckiecturt Seminar

haddwtan.ru~awsa.ux.som

Unisys../

48O

Some SW Maintenance Issues

"• Early 1990's data indicates that corporate expenditures for software As
around $100 billon/yr.

"* Approximately $70 biion/yr is allocated to maintenance.

"* If maintenance costs increase at 10%/yr (at the same rate as the size of
system growth), then over a ten year period over $1 billion will be spent
on maintenance.

"* The value of legacy system software is in the trillions of doflars and is
usually not economically feasible to replace.

"• The documentation of legacy system software in some cases does not
exist, not adequate, or not current.

n.i. Mbsi. ACM Sim. sWEumk i fa 1m4 W ILK.. 4.OC 1M P &g. 54 95

Unisys--.

481



Architecture

Fatal Architectures

Unisys-

482

Architecture

- Software Architecture Definition

- Software Arcitectures Context
* Software Architectures Benefits

User Hostile Architectures

Unisys.

483



Reuse

e Development of reusable amsts from cratch reqbuiar bage initial
investment of human capkil, real capita and time that gives reuse a
ong lead time before it smrs to pay off In a signicant way.

* A promising potential cost effective approach I by extracting and M
englneering them from existing rftwm sysk•.

Unisys--W

454

Reuse

* Premise:
- A large amount or knowledge and expertise of the companies that

developed and/or use a software system can be retrieved from the
same system in different formi such as requirements or design
documents, code, test cases, user manuals, maintenance journal

- The use of an existing software system to extract reusable asse
allows part of this knowledge and expertise to be salvaged in order to
reapply it in the maintenance of the original system or in the
development of other similar systems.

Unisys-

485



Some Maintenance Predictions

"* Cllent-serveir pardigm to grew to dominate the way organizations
structure their computer configurations, both in terms of hardware and
software. The additional demands..n application. and system software,
data communications, databases, fiks, anid traosaelon integrity (to made
a few factors), will makae software maintenace more difficalt In a clien.
sever environment.

"* Multiprocessing In several forms will became common, mad expectatiun
consistent with the dlient-evev ouw. This adds to softwar maintenance
an additional dimsension (multiprocessing) to be understood and
maintained. As hardware and operating systems offerever moe.'
multiprocessing capability, personnel doing soft-wae maintenance will
istcreasingly have to work with it.

uws fin~ I w ouu Makism Fw P CSM To Ym Lm. NWO Cho& fto

-Unlays-

486

Workshop Questions

"* Can software architectures, software reuse, and software
maintenance, be defined and governed by a set of rules to effectively
develop and evolve software systems?

"* It has been estimated that 'legacy software" is in the order of trillions
of dollars. The maintenance of these systems consumes a large
arnoum4 of the software budget, approximately 70%. Can software
architecture and software reuse be used to address these issues?

Unlays

487



Solution

Architectures supporting Software Maintenance

Unisys.

48

489



aa

Ii ~ ;,i, II

w 411 410

SI :"S
-iJIII 1

! t4ij I4 I
s-I I4, I ,! :

"i i I' !I
!•I| U.U

• .i;

iis



I I I I I I1

'• is ' -.

St.

,I,

Hijf ta

r" Ill fit

149

---- 1 -' -----
. ,ii !l . ,,ii

II II! I-'.



Laii
IC I.

Mo I f t1 ii
i " I-Ill ~iilr1

* 1.. tills,!

lea 
¶11 I IIIIU

CcS

o+ £ + !i114•

I 
Ito 

I

- r2+I !J:|' I |I; I li +,- I too! +I -ll,,.,°,i
'lIi !~i il ,,i:.:j:,jj '*1

CLL

S I + ! i ! ! ------------ l•• i~~c~ iI: ii ,,i

S•, .._ ,.. !i~ic+ As



co 6

'4 * l I t

Siii t

"!" * '!! I tlIhill

I!ii |I ..
SI : ... .. .. ..j 'I

415

IU ~ jail

III

o ~ ~ iItl jI

jll iii I. 1 .11 II i

Ni:i
tll~ith



SMIi

Sii

iA 3 ai! I III 
, Ji ll

il , I I ii

I 
I 

I

92 1 
1 ! ]llJI M al lfl

I . ...i l i i1i

l iiii' 
t I

I 
i t i1

Ii-.

.,i 
;t!". 

i.



I I i '

Owt lilt!•" I ~iii"

< a ,,iII,
L . _ __,,

Jll

viii II0
IC _ _ __II



1I j

H is

, I

ti

plit

0 5 a 0I It

0. ___

fli

0•

L_.

,,r -•SOS



Ira

ili

! ' I i1

,l I I I I II I I I III I 11 1 1 I I I

Vs 1 lit

_____ ____ ____ ____ _ IO



Ii i i

' i II!E

00

I
S I

F0

-.. .Ui l i ii



8t.~iijIsit.

p i t ll
*IiiL 1



N iil

SI

CL

all0

I iii-pi ib

i i



I I

I •i l

lit3

Slil~ dl litJ1,
512

513



Ship System 2000

Celsiusfech

514

The Projects
G " Iop~g miit (t) L e n gh j in ) A n n u n e n

C4tbor 380 57 Guns
(4) SSM
SF300ASW

(S+300 300 54 Gun
(7iB.3)(i. role

ISIOGweapons)
(41 2700 112 Gun

Rauma 200 48 Gun
(4) SSM
ANZAC 3225 118 Gun
(10) SAM
Gotland -. 1250 52 Torpedo
(3.1)
Siric Mufti-shte national

Air Defence System

S'S



The Background

Mk3: Kkv Gbg (42)

Mk2.5: Kkv Sto (15)

in . Mk2: Hugin (67)

Mkl: Spica (32)

I I

-..70 80 90

516

Strategy

"* Structure for reuse

"• Use recognized standards (open systems)

"• Emphasis on applications

"* Produce family of components

"* Integrate components into a system

S17



Classical Multi-Project Development

time

Creating a Set of Components

Customer system 1 Customer system 3

Customer system 2 Customer
__ _- system 4

time

519



Ship Sy stem 2000

Structure in a Node
Nodes

LAN

Structure

M jc-ul R "ula within a

Software
structure

S21



Life in an Ada Program

IPC 1: Next event IPC

2: change state,
Initiate 1/0,

3: Waitl',

HW

I$22

5 E2 Configuration Data

O •Special Applications

w Standard Applications

U)
o . Application Support Crtical(n o go jw'k Interfaces

Computer System

.22

CI-a - _ _ _ _ _ _ _ _

sz1



MMI Flexibility

The software Hardware
component sees

a~a view:Mgr Text/graphics SMi~i IMU s

Pea % P"Itentlm Symnbology (AM~
cat I ceteqrlp

Color

Laguage am am

SOperator roles

etc...

5214

SS2000 Software Commonality

0% M 0o% 00% 0% I0% %

Frigate
0New

Submarine IUWOW~ed

Air Defensec
Center

MCM vessel



Document Model

The situation 1993
* Several systems operational with

several customers

* Highly successful firing tests

* ,:2 MDSI operational
* Stable architecture

T High quality in the deliered
software
S Demonstrated portability

527



2 aj= e chnologySWmdor CT 06903Tel. (203) 968-094

Dces, obIkn~evi
01  Septups. D

R ae 1, m~ U 
belirnc by Use

Req. 53. if te Creo 
J ar ad i ts he

disPlay th existingcx::::t~rnicOr leadrx~ste



Cutme nfrato Sse Pquriiii

K4 wa

531



F~~~ CuErIxrnto ytema Dartabs.

Customer IdnfoOperationstrcu

amb .w Data Inter-
relationships

532

ThegM~is 0prtonlPncplOfACS

D533



Software Architectures
Steve Roodbeen

Naval Undersea Warfare Center
Division Newport, RI
17 November 1993

534

NUiL I S'0 N. e.j

Architecture

* The Science, Art, Or Profession Of Designing
And Constructing Buildings, Bridges, Etc.

* The Design And Integration Of Components Of
A Computer Or Computer System.

535



Software Architecture
"* The Science, Ark Or Profession Of Designing

And Constructing Software, Software Systems,
Etc.

"* The Design And Integration Of Software
Components In A Computer Or Computer
System.

I I I

Current Emphasis
- Analysis, Acquisition, And Integration Of Several

Heterogeneous Support Software Tools.
"* All Support Software Tools Accessible Through A Central

interface.

"* All SotwNr System fonkwnUon Accessible Thfough A
Central Interface.

"* List Of Tools Includes: CARDS RLF, SEE-Ada, Rational
Rome, AdaMAT, and Objectrnaker.

537



Current Goal
* Analyze Legacy Software Systems And Extract

Design Information.

IIW C I] I I ] ] ]v ]

Design Capture
• Analysis And Extraction Of Design Infomatlon From

Legacy Software.

539



An Object-Based View Of Functionally
DeSIoned Code

Architecture Representation
Primary Representation Vehicle CARDS RLF

"* RLF Selected Due Toits Robustness(e~g.,its Ablity To
ProvideS Access To A VaritY Of Inforfetfon)

"* All Other Representation Tools Cen Be Launched From The
RIP. Basically, RIF Provides An Open Interface To Other
Tools

$41



Lessons Learned
"* Developer's Reluctant To Provide Design

Information
"* Design Information May No Longer Be Available
"• information That is Available Is Incorrect Or

Obsolete
"* It Is Difficult To Incorporate The New Software

Engineering Paradigm Into The Design Process (i.e.,
Now Is A Tuff Time To Change The Way We Do
Business)

542

The Ultimate Goal
"* Define Process Which Will Result In The

Generation Of Reusable Software Systems/
Subsystems/Components
" object Oriented Technology
"* New Tools Emerging To Support This Approach

"* Expand Software Architecture To Include
Everything Known About A Given System

543



TWO KINDS OF DOMAIN

Domains SysteAlums

S45



MAXIMUM DIVERSITY
DOMAIN / SYSTEM INTRACTION

Domains Symtms

6046

SYSTEMATIC APPROACH TO IEW REUSE

DnlUGI4CE.ELECM~ONICW WARFAE OAMAI

* K x3 AOL

nf nDM .1RD1Al

lcw547



WM~wAW 000CGNAlS

SYSTEMATI7C APPROACH TO JEW REUSE
(CONT'D)

.... ....... ....... ..

0DM DOMAIN ANALYSIS REFERENCE MODEL
Reusable Assets

IAsset Implementation esrpie U~~

E3 Prripdive Anlyi
Asset Implementationi

Feature
Priorltlzation . Modd Dmi

3Input

Exemplar Workproducts

WARUTWi ~ SX9



PRESCRIPTIVE ANALYSIS
SOLUTON SPACE

S-Os

- Asliet

- Ensemble

Perormruance

No" DIM11ENSIONAL FEATURE SPACE

WA5W~p~Mles

550

DOMAIN ARCHITECTURAL MODEL VARIANTS

Dung, Dunl &Dms
Model Model

Anid

Separately Selectable Enlsembles Layered Ensembles

*A Domain Archtsiectural Model will be somne combinatioct
of a layved and sepaastely selectalile set of Asset Ensembles

*Asse Bue Archisectuce undestys thM domain uvhitutwin

L W ARO MY CWRS ODWM~E1I



UT*IAMPA KlMZ VIMOIMWA1HIN VMLftT

DOMAIN 1ING~rnIG100-O MOU 4ANAVOmIf CfUOt

ArForce/STARS
Demonstration Project

Space Command & Control
Architectural Infrastructure (SCMI)

Ca"t Kelly L Spicam USAF
Lead. Domain Engknewiqg & Revs Worldog Grouap
17 November 199
Spc and Wasnn -M Cienter
Air Force Spama Conmmmd

MSWSCIM. Stop 2320.130 W. Naine St
Peterson AFB. Co. 80914-2320
(719)554-6675
kspicezfspeecom~af.mil

552

-iiiiiiiiaiiM ajor Systemsiiiiiiiiiiii

C~rmal L10114 s tm

t~k. ~&Sp..) Stffl

Ioadtd

C4110553



inThe Architectural Goal ==O-

SWSM

- Sstems Development mo

c 400

SALEU(.a

553



-Command Center Architecture

Resultsrmu

hguioo ~ ~ ~ ~ ~ ~ ~ ~ p Itfr G"uln Eli A iaif uoatc 3ue oa

Air DEIV?6 .3 .3 li~t 4847143
Mlu~ SUlHPDF4IW(X in 9 0 63 2b74 4, 0 15.7
Spain M/AiX 0.0 3 0 7SA 4.71236

05*



=100auImnm.0ICWUrUOt A P3 2

TARGET: REFINE LAYERS TO SCAI
ARCHITECTURE

R EILAE T S

_MMI WWASONAIN XJW

ARCHITECTURE
"• Abstract Display-User Interaction Classes Into Mission Objects/

Classes

I • Define Standard Structure For Mission Objects

"• Continue to Refine Layering Scheme:
-Standardize Layer Interfaces (e.g. Common Layer)
-Define Standardized Interface to RICC Tools

"• Define Consistent Display Interface Paradigms

"• Extend Scope of 00 Analysis to Other Missions Besides Space

"• Extend RICC "Layer" To Include Additional Tools

A t De neacti Ino M isn Its



D T*RW==MWW-uaCuM0Wu=u UOWAFW

Building the Product-Line Organization
(Functional Organization Mimics Architecture Layering]

71o71



APPLICATION

SYSTEM APPUCATION BASED SYSTEM

A F =8*WmMu Alwainrun swnmwf ort owmqa w'rommm cl omn*m

prmmm W.

,ICIIurmI mIInu .m
nSmmi.nmumun

uwmw

562

BASED

TARGETED C31 SYSTEM CHARACTERISTICS

W IMULIPLE COOPERATING APPLICATIONS

* GEOGRAPHICALLY DISTRIBUTED

• TOLERANT TO COMMUNICATION LINK INTERRUPTION

* REPUCATED DISTRIBUTED DATABASES

* VARYING SECURITY LEVELS AND REQUIREMENTS

* PORTABLE AND REUSABLE APPLICA71ON SOFIWARE

363



APPLIATO

SYSTUI SYSTEM EXAMPLE:
HELICOPTER VIEW

. DWIW COOPERATING ~ELEMETS

.ANALYZE INFORMATION R.OW

564

APPLCAIO
BASED SYSTEM EXAMPLE:

AIR COMMAND CENTER

LO¶NGTMA

Tm wmuia5



SMA

CONCEPT:

"* EAMSWTI ELIMITIB OX-CCN W. PNOVIoDI ALL HARDWARE
AN SOFTWARE NECSARW TO E=CUTE rfS TASK

"* EAC SYSTEM MLMENT CAN OPERATE IN A STANS.A.LOO MODE IN TM

-vlrOMoommcallm OVER l IU'WORK US NOT POumLi

* EASIER TO D•VELOP AM MATAN4 THAN CONVENmONAL SYSTEMS

SFnOVIDUSA mI sounWoWNToiOUcuiPostm uNT- om
ROPUST PRODUCTS AREfVELOPID

V uJPPORni AIG OF COMPIUE RESOURCES 70 ALLOW PARALLEL AND
O mI S uTR iB E P RO C ES SIN G EM 4 0V Ml O T WtL R W lE IU N FEm JS E D

COeMPUTE RESOURCES

rAPPLICATION

APPROACH DESCRIPTION:

ITEAIVME PROCESS

* IDEINFY TASKS AND WORKFLOW USING THE ABC METI4O

SIDENTPY SECURITY REQUIREMENTI FOR EACH TASK

SIDENTFY DATA REQUIREMENTS FOR EACH TASK

* ANALYZE DATA AND CONTROL INTERFACES BETWEEN TASKS

567



APPROACH DESCRIPTION

"GREOUKDAESYTEDMCOKID UNNAMONG 1K GROUPS BASED

UPO owsuusauMS USROED 917N coaEM~US IsE TASK
GROUPSROUPS SHULD M WRAMME SUCHA N0OwE
OOMM70 ITR SbVRETbWEENTHE MAYSUT5EAC cH1TbC11IRY

APPLCA~OxnamO PUMO OE NGLSI AU

BASED

SYSTE

r 
APPLCATIO



MASD

ADVANTAGES:

" ECOMOUSING WITO SMALLER COOPERATING ELEMETS RESUU.

INSM WTH IMPROVED WUERSTAIAIL

"* TOLERANT OF ,ASUE COMMATO LM

"* TOLERAJT OF OTHER SYSTEM ELEMENT FAILURE

"* SOLVES EUNITY PROM

" SUPPORTS M ME•SAGE ROU•ING AN M uRNsZ
OOMMWNCIA1ION

"* US OFMESSAGES ROVE IPOVED IFORMAT
TRACA TT BETWENE SYSIM ELEMENT

"* USE OF IESSAGE$ REDUCE$ DEVELOPMENT AND INTEGRATION
COSTS BY iAJPUFYINQ SYS;TEM ELEI§3fT SIMULATION

SYTE

FAPPLIATO

DISADVANTAGES:

SINCREASES WTERFACE COMPLEXrrY

M MAY RESULT IN SLOWER ACCESS TIMES

* REQUIRES IMPROVED INTERFACE MANAGEMENT TOOLS

$71



CONCLUSION:

Thu APPL=A11ON BASED 8Y1Ir ARIOHfL-M pROVIM A
MEIHODOLOGY FOR ADD48NUO AND SOLVING UAY OF THE
ISUS FACING SWBMI FOR DEVLOPING A COUPLtXCPI

CAPAWLITY

S72

1, F i ' ' = II IIII III I II

I0I

I
5i 41

I 
7,



11111111i"
Ii .. .. .

"I ' "4 liii

S74



STARNO-vC-BOOS••O10 29 Junmmy 1994

APPENDIX A - PARTICIPANTS

Dr. Dennis Ahem ........................................... Westinghouse Electric
Mr. Robert Allen ................................... Carnegie Mellon University
Capt Emily Andrew ........................................ National Test Facility
Ms. Rose Armstrong .............................. DSD Laboratories/CARDS
Ms. Pam Arya ...................................................... General Research
Mr. Ali Babadi ....................................................................... CERC
Major Paul Bailor ..... Air Force Institiute of Technology/ENG
Mr. James Baldo .................................................................... Unisys
Mr. Eric Beser ...................................................................... Unisys
Mr. Christopher Bengtsson ........................................... C31, Sweden
Mr. Vincent Bia ................... National Test Facility
Mr. James Bonine ..................... Design Metrics
Mr. Wayne Brandt ...........-......... CERC
Ms. Linda Brown .................................................................... OASD
Mr. J. Chris Commons ...................... ESL, Inc.
Mr. Dick Creps ....................................................................... Unisys
Mr. Paul Dumanoie...................................... DOD/Army STRICOM
Mr. Jim Estep ........................................................... Unisys/CARDS
Mr. Jeff Facemire .................................................. Azimuth/CARDS
Dr. Peter Feiler ....................... Software Engineering Institute/CMU
Ms. Karen Fleming ... Strictly Business Computer Systems/CARDS
Ms. Deborah Gary ...................... DISA/CSRO
Mr. Mark Gerhardt .......................................................... ESL, Inc.
Mr. Mark Gerken ............................................................ AFIT/ENG
Mr. Terry Gill .................................................. National Test Facility
Dr. Robert Gillespie ............................................................ WVT
Mr. Chandra Gollypudy .......................................................... CERC
Mr. Nicholay Gradetsky ......................................................... CERC
Mr. Paul Gregory ................................................... Unisys/CARDS
Ms. Kerni Haines ..................................................... Unisys/CARDS
Ms. Kammi Hefner ........................... Electronic Warfare Associates
Mr. Scott Hissam ..................... Unisys/CARDS
Mr. John James .............................................................. Intermetrics
Mr. Dan Juttlestadt ............................................................ NUWC
Mr. Erik Karikosld .................................................... Unisys Sweden
Mr. Stellan Karnebro ........................................................ Syst. Tech.
Mr. Perry Koger .................. Electronic Warfare Associates/CARDS
Mr. Paul Kogut ........................................................ Uisys/CARDS
Mr. Jim Law ................................................ D.N. American/CARDS
Mr. Roy Lawson ................................. CERC
Mr. Bob Lencewicz ........................................................... ESD/ENS
Mr. Stanley Levine .............................................................. CECOM
Mr. Ed Liebhardt H ...................................................... MountainNet

A-1



STARS-VCBO8O01A0 29 Jmnary 1994

Mr. Quiang Lin ...................... Galaxy Global Coporation/CARDS
Mr. Bill Loftus ......................................................... WPL Labs, Inc.
Mr. Pete Ma avelias ................................................................ USAF
Ms. Loraine Martin ................................................. Unisys/CARDS
Mr. Dan McCaugherty ................................................... Intermetrics
Mr. Steven Merritt. ................................................................... DISA
Mr. Mike Nichol ......................................................... ASC/EN(CR)
Mr. Dan Nichols .................. Electronic Warfare Associates/CARDS
Mr. Ulf Olsson ............................................................... CelsiusTech
Mr. A. Spencer Peterson ................................................... SEI/CMU
Ms. Aleisa Petracca ............................................... Azimuth/CARDS
Mr. Jim Petro ....................... Electronic Warfare Associates/CARDS
Mr. Charles Plinta .................................................................... Accel
Mr. Hans Polzer ..................................................................... Unisys
Mr. Jay Reddy ........... Strictly Business Computer Systems/CARDS
Mr. Stephen Riesbeck .......................................... Azimuth/CARDS
Mr. Steve Roodbeen .............................................................. NUWC
Mr. Robert Rutherford ................................................. SofTech, Inc.
Mr. Skip Saunders ........................................................... Mitre Corp.
Mr. Evan Schmidt ............ Electronic Warfare Associates
Mr. Bill Schwartz ....................................................................... DoD
Ms. Jennie Shipe .......................................................... SofIech, Inc.
Mr. Mark Simos ..................................................... Organon Motives
Dr. Thomas J. Smith ....................................................... Mitre Corp.
Ms. Catherine Smotherman ................................................... Unisys
Mr. Charlie Snyder ................................................... Unisys/CARDS
Mr. Michael Sobolewski ......................................................... CERC
Dr. Nancy Solderitsch .............................................. Unisys/CARDS
Capt Kelly Spicer .......................................................... SWSC/SMX
Major Frederick Swartz ................................................. ASC/YTEC
Mr. Robert Terry .......................................................... MountainNet
Mr. Will Tracz .................................................................... IBM FSC
Capt Paul Valdez ................................................................ ESC/ENS
Mr. Kurt Wallnau ..................................................... Unisys/CARDS
Mr. Mike Webb ............................................................................ SEI
Mr. Bob Webster ................................................................ ESC/ENS
Mr. Roger Whitehead ............................. DSD Laboratories/CARDS
Major Grant Wickman ........................................................ CECOM

A-2



SrA-RVC-B04001)O0 29 Jumzy 1994

Mr. Dennis Ahern
Westinghouse Electric
P.O. Box 746, MS 432

Baltimore, MD 21203-0746

Mr. Robert Allen
CMU

Science Hall 8214
Pittsburgh, PA 15217-3890

Capt. Emily Andrew
National Test Facility

730 Irwin Ave.
Falcon AFB, CO 80912-7300

Ms. Rose Armzitrong
DSD

1401 Country Club Rd.
Fairmont, WV 26554

Ms. Pam Arya
General Research

1900 Gallows Road
Vienna, VA 22182

Mr. Ali Babadi
CERC

P.O Box 6506

Morgantown, WV 26506

Major Paul Bailor
AFIT/ENG

2950 P Street
Wright-Patterson AFB, OH 45433-6583

Mr. James Baldo
CARDS

2010 Sunrise Valley Drive
Reston, VA 22091

Mr. Christopher Bengtsson
C31

S-115 88 Stockholm
Sweden

A-3

S. .. . . . . . ..m a I I I II I I I I I I II I I



STARS.VO-BOO2AX)lA3)0 29 Juay 1994

Mr. Eric Bes•e
12344 Grcenspring Ave.

Owings Mills, MD 21117

Mr. Vincent Bia
NTF

730 Irwin Ave., MS N9000
Falcon AFB, CO 80909

Mr. James Bonine
Design Metrics

2 Cedar ITee Lane
Stamford, CT 062903

Mr. Wayne Brandt
CERC "

P.O. Box 6506
Morgantown, WV 26506

Ms. Linda Brown
OASD

1225 Jefferson Davis Highway
Arlington VA 22202

Mr. J. Chris Commons
ESL, Inc.

495 Java Drive
Sunnyvale, CA 94088-3510

Mr. Dick Creps
Unisys

12010 Sunrise Valley Drive
Reston, VA 22091

Mr. Paul Dumanoie
DoD/Army STRICOM

12350 Research Parkway
Orlando, FL 32826-3276

Mr. Jim Estep
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

A-4



STARS-VC-BO0OSA 29 Jm=y 1994

Mr. Jeff Facemire
SAzimuth

1401 Country Club Rd., Suite 204
Fairmont, WV 26554

Dr. Peter Feiler

SEI/CMU
Caamegie Mellon Univ.

Pittsburgh, PA 15213-3890

Ms. Karen Fleming
SBI

12 Moran Circle
Fairmont, WV 26554

Ms. Deborah Gary
CSRO

500 N. Washington St., Suite 200
Falls Church, VA 22046

Mr. Mark Gerhardt
ESI, Inc.

495 Java Drive
Sunnyvale, CA 94088-3510

Mr. Mark Gerken
AFIT/ENG

2950 P. Street
Wright-Patterson AFB, OH 45433-7765

Mr. Terry Gill
National Test Facility

730 Irwin Avenue
Falcon AFB, CO 80912-7300

Dr. Robert Gillespie
WVT

West Virginia Tech
Montgomery, WV 25136

Mr. Chandra Gollypudy
CERC

P.O. Box 6506
Morgantown, WV 26506

A-5



STARS-VC-B008AI01/00 29 Jamuaiy 1994

Mr. Nicholay Gramdetsky
CERC

P.O. Box 6506
Morgantown, WV 26506

Mr. Paul Gregory
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Ms. KerriHaines
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Ms. Kammni Hefner
EWA

1401 Country Club Rd.
Fairmont, WV 26554

Mr. Scott Hihsam
Unisys

1401 Country Club.Rd., Suite 102
Fairmont, WV 26554

Mr. John James
Intermetrics

Mr. Dan Juttlestadt
NUWC

Building 1171,3rd Floor
Newport, RI 02841-4612

Mr. Erik Karikoski
Unisys Sweden

Mr. Stellan Kamebro
Syst. Tech

S-115 88 Stockholm
Sweden

Mr. Perry Koger
EWA

1401 Country Club Rd.
Fairmont, WV 26554

A-6



STARS-VC-B008=Oj)0 29 Jumiry 1994

Wr. Paul Kogut
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Jim Law
DNA

1401 Country Club Rd.
Fairmont, WV 26554

Mr. Roy Lawson
CERC

P.O. Box 6506
Morgantown, WV 26506

Mr. Bob Lencewicz
ESD/ENS
Bldg. 1704

Hanscom AFB, MA 01731-5000

Mr. Stanley Levine
CECOM

7 10 Carol Avenue
Ocean, NJ 07712

Mr. Ed Liebhardt II
MountainNet

2705 Cranberry Sq.
Morgantown, WV 26505-9286

Mr. Quiang Lin
Galaxy Global

1401 Country Club Rd.
Fairmont, WV 26554

Mr. Bill Loftus
WPL Labs, Inc.

410 Lancaster Ave., Suite 6
Haverford, PA 19041

Mr. Pete Maravelias
USAF

ESD/AVS, Bldg. 1704
Hanscom AFB, MA 01731-5000

A-7



STARS-VC-BOO0WLX 29 January 1994

Ms. L&raine Martin
CARDS

4 Militia Dr., Suite 11
Lexington, MA 02173

Mr. Dan McCaugherty
Intermetrics

Mr. Steven Merritt
DISA

500 N. Washington St.
Falls Church, VA 22046

Mr. Mike Nichol
ASCEN(CR)

1865 4th St., Suite 11
Wright Patterson AFB, Ohio 45433-7126

Mr. Dan Nichols
EWA

1401 Country Club Rd.
Fairmont, WV 26554

Mr. Ulf Olsson
CelsiusTech

S-175 88 Jarfalla
Sweden

Mr. A. Spencer Peterson
SEI/CMU

Carnegie Mellon Univ.
Pittsburgh, PA 15213-3890

Ms. Aleisa Petracca
Azimuth

1401 Country Club Rd., Suite 204
Fairmont, WV 26554

Mr. Jiu Petro
EWA

1401 Country Club Rd.
Fairmont, WV 26554

A-8



SrARS-VC-B oW)j 0D 29 Jammy 1994

Mr. Charles Plinta
Accel

449 Maple Avenue
Pittsburgh, PA 15218

Mr. Hans Polzer
Unisys

12010 Sunrise Valley Dr.
Reston, VA 22091

Mr. Jay Reddy
SBI

12 Moran Circle
Fairmont, WV 26554

Mr. Stephen Ridsbeck
Azimuth

1401 Country Club Rd.
Fairmont, WV 26554

Mr. Steve Roodbeen
NUWC

Bldg. 1171-3, Code 2221
Newport, RI 002841-1708

Mr. Robert Rutherford
SofTech, Inc.

P.O. Box 210386
Montgomery, AL 36121-0386

Mr. Skip Saunders
Mitre Corp.

202 Burlington Rd.
Bedford, MA 01730

Mr. Evan Schmidt
CARDS

1401 Country Club Rd., #201
Fairmont, WV 26554

Ms. Jennie Shipe
SofTech

Alexandria, VA

A-9



STARS-VC-B00A)o01DO 
29 Jiuumy 1994

Mr. Mark Simos
Organon Motives
36 Warwick Road

Watertown, MA 02172

Dr. Thomas J. Smith
Mitre Corp.

752S Colshire Drive MS:W197
McLean, VA 22102

Ms. Catherine Smotherman
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Charlie Snyder
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Michael Sobolewski
CERC

P.O. Box 6506
Morgantown, WV 26506

Dr. Nancy Solderitsch
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Captain Kelly Spicer
SWSC/SMX

130 W. Paine St.
Peterson AFB, CO 80914-2320

Major Frederick Swartz
ASC/YTEC

2240 B St., Suite 7
Wright-Patterson AFB, OH 45433-7 ill

Mr. Robert Terry
MountainNet

2705 Cranberry Sq.
Morgantown, WV 26505

A-10



STARS-VC-BOO8&xIN0 
29 Jumuy 1994

Mh Will Wracz
IBM. FSC MD 0210
1801 State Route 17c

Owego, NY 13827-3994

CapL Paul Valdez
]ESCIENS

Bldg. 1704, Rm 107
Hanscom AFB, MA 01731-2116

Mr. Kurt.Wallnau
Unisys

1401 Country Club Rd., Suite 102
Fairmont, WV 26554

Mr. Mike Webb
SEI

Carnegie Mellon University
Pittsburgh, PA 15213-3890

Mr. Bob Webster
ESD/ENS, Bldg. 1704

Hanscom AFB, MA 01731-5000

Mr. Roger Whitehead
CARDS

75 Union Avenue
Sudbury, MA 01776

Major Grant Wickman
CECOM

AMSEL-RD-SE-R-ESD-SIpT
Ft. Monmouth, NJ 07703

A-il



SrAlS-VGBWWL 29 Januaryi 1994

APPENDIX B - BIBILIOGRAPHY

The following sources were used for the development of Seminar materials.

Abowd, et. &L, "Structural Modeling: An Application Framework and Development Process
for Flight Simulators." Tbchnical Report CMU/SEI-93-TR-14, Software Engineering
Institute, 1993.

Air Force Institute of Technology and the Software Engineering Institute, "Putting the
neeing in Software Engineering." Annotated briefing, Carnegie Mellon University.

Alexander, C., "Notes on the Synthesis of Form." Harvard University Press, ISBN 0-674-
62750-4, 1964.

Alexander, C., "The Tuneless Way of Building." Oxford University Press, ISBN 0-19-

502402-8.

Apple Macintosh "MacAPP Developer's Kit Documentation."

Arango, G., Prieto-Diaz, R., "Domain Analysis Concepts and Research Directions." Domain
Analysis and Systems Modeling, IEEE Computer Society Press, ISBN 0-8186-8996-X, 1991.

Mango, G., Schoen, E., Pettengill, R., "A Process for Consolidating and Reusing Design
Knowledge." Proceedings of The 15th International Conference on Software Engineering,
May 17-21, 1993.

Arango, G., Schoen, E., Pettengill, R., "Design as Evolution and Reuse." Proceedings of the
Second International Workshop on Software Reusability, March 24-26, 1993.

Arango, G., Schoen, E., Pettengill, R., Hoskins, J., "The Graft-Host Method for Design
Change." Proceedings of The 15th International Conference on Software Engineering, May
17-21, 1993.

Balzer, R., "Model Management Examples." Proceedings of DSSA VII Workshop.

Balzer, R., "Design Refinement in DSSAs." Proceedings of the JSGCC Software Initiative
Strategy Workshop, December 1992.

Barr, Feigenbaum, Cohen, "The Handbook of Artificial Intelligence." Vols. I-IV, 1981-89.

Batory, D., O'Malley, S., "The Design and Implementation of Hierarchical Software Systems
with Reusable Components." Technical Report TR-91-22, University of Texas at Austin,
Texas, January 1992.

Booch, G.,"Software Components with Ada." 1987.

B-I



STARS-VC-B00•0X/01 29 Januamy 1994

Booch, 0., "Object-Oriented Design with Applications." 1991.

Booch, 0., "Next Generation Methods - Bringing Order Out of the Chaos." Journal of Object
Oriented Programming, Supplement on 00 Analysis and Design, July/August 1993.

Braun, "DSSAs: Approaches to Specifying and Using Architectures." STARS 92, December
1992.

Bryan, D., Rapide-0.2 Language and Tool-Set Overview. February 1992.

Buschmann, "Rational Architectures For Object-Oriented Software Systems." Journal of
Object-Oriented Programming, September 1993.

Callahan, J., Purtillo, J., "A Packaging System for Heterogeneous Execution Environments."
IEEE Transactions on Software Engineering, Vol. 17, No. 6, June 1991.

Coad, P., "Object-Oriented Patterns." Communications of the ACM, Vol. 35, No. 9,
September 1992.

Commons, J.C., Gerhardt, M., "A Model for Analyzing Megaprogramming, Reuse, and
Domain Specific Software Architectures." TRI-Ada, September 1993.

Cox, "Planning the Software Industrial Revolution." IEEE Software, November 1990.

Datapro "Reports on...", updated periodically.

Devanbu, P., Brachman, R.J., Selfridge, P.G., Ballard, B.W., "LaSSIE: A Knowledge-Based
Software Information System." Communications of the ACM, May 1991.

Dumas, "Designing User Interfaces for Software." 1988.

Estrin, G., Fenchel, R., Razouk, R., Vernon, M., "SARA (System ARchitects Apprentice):
Modeling, Analysis, and Simulation Support for Design of Concurrent Systems." IEEE
Transactions on Software Engineering, Vol. SE-12, No. 2, February 1986.

Feiler, P., "Configuration Management Models in Commercial Environments." Technical
Report CMU/SEI-91-TR-7, Software Engineering Institute, 1991.

Fischer G., "Human Computer Interaction Software: Lessons Learned, Challenges Ahead."
IEEE Software, January 1989.

Freeman, P., "A Conceptual Analysis of the Draco Approach to Constructing Software
Systems." IEEE Transactions on Software Engineering, SE-13, July 1987.

B-2



SrARS-VC-BO00=1A0) 29 Jamxiwy 1994

Gamma, E., Helm, R.. Johnson. R, ViPisides, IL, "Design Patterns: Abstraction and Reuse of
Object Oriented Design." Unpublished paper. Contact Erich Gamma at ibligent, Inc., 10725
N. De Anza Blvd., Cupertino, CA 95014-2000.

Garlan, D., Shaw, M., "An Introduction to Software Architecture." To appear in Advances in
Software Engineering and Knowledge Engineering, Volume I, World Scientific Publishing
Company, 1993.

Garlan, D., Scott, C., "Adding Implicit Invocation to Traditional Programming Languages."
Proceedings of The 15th International Conference on Software Engineering. May 17-21,
1993.

Garian, D., Kaiser, G.E., Notkin, D., "Using Tool Abstraction to Compose Systems." IEEE
Computer, June 1992.

Gelerator, D., Can'iero, N., "Coordination Languages and Their Significance."
Communications of the ACM, Vol. 35, No. 2,1992.

Goguen, "Reusing and Interconnecting Software Components."

Griss, M., Informal Presentation Charts. WISR6, November 3-5, 1993.

Harel, D., et.al., "STATEMATE: A Working Environment for the Development of Complex,
Reactive Systems." Technical Report, 10th ICSE, 1988.

IEEE Std 610.12 - IEEE Standard Glossary of Software Engineering Terminology. December
1990.

Journal of Object-Oriented Programming, September 1993.

Kazman, R., Bass, L., Abowd, G., Webb, M., "Analyzing Properties of User Interface
Software." To be released as a Technical Report, Software Engineering Institute, Carnegie
Mellon University.

Knuth, "The Art of Computer Programming." Vols. I-1I1, 1973.

Krueger, C. W., "Software Reuse." ACM Computing Surveys, Volume 24, Number 2, June
1992.

Lakoff, G., "Women, Fire and Dangerous Things: What Categories Reveal About The Mind."
University of Chicago Press, ISBN 0-226-46803-8, 1991.

Lane, T. G., "Studying Software Architectures Through Design Spaces and Rules." Technical
Report CMU/SEI-90-TR-18, Software Engineering Institute, 1990.

B-3



SrARS-vc-006AK)1AX 29 Januazy 1994

Lee, Rissman, D'Ippolito, Plinta, Van Scoy, "An OOD Paradigm for Flight Simulators."
Technical Report CMU/SE.-88-TR-30, Softwr Engineering Institute, 1988.

Lowry, "Software Engineering in the Twenty-First Century." AI Magazine, Fall 1992.

Lowry, M. R., McCartney, R. D., "Automating Software Design." AAAI Press, 1991.

Lubars, M.D., "A General Design Representation." Technical Report STP-066-89, MCC
Corp., Austin, Texas, 1989.

Lubars, M. D., "Representing Design Dependencies in an Issue-Based Style." IEEE Software,
July 1991.

Luckham, D.C., von Henke, "An Overview of Anna: a Specification Language for Ada."
IEEE Software, March 1985.

Luckham, D.C., Vera, J., "jiRapide: An Executable Architecture Definition Language." April
1993.

Luckham, D.C., Vera, J., "Event-Based Concepts and Language for System Architecture."
March 1993.

Metalla, E.,"Domain-Specific Software Architectures." STARS 92 Annotated Briefing, 1992.

Mettala, E., "'The Domain Specific Software Architecture Program." DARPA Software Tech-
nology Conference, April 1992.

Meyer, B., "Object-Oriented Software Construction." Prentice-Hall, 1988.

Neighbors, J.M., "The Draco Approach to Constructing Software from Reusable
Components." IEEE Transaction on Software Engineering, SE-10, September 1984.

Neighbors, J.M., "Draco: A Method for Engineering Reusable Software Systems." Frontier
Series: Software Reusability: Volume I - Concepts and Models, ACM Press, 1989.

Neighbors, J.M., "Draco: The Evolution From Software Components to Domain Analysis."
International Journal of Software Engineering and Knowledge Engineering. Vol. 2, No. 3,
September 1992.

Nierstrasz, 0., Gibbs, Tsichritzis, "Component Oriented Software Development."
Communications of the ACM, Vol. 35, No. 9, September 1992.

OMG, "The Common Object Request Broker: Architecture and Specification." 1992.

OMG, "Object Management Architecture Guide." September 1992.

B-4



SrARS-VC.BOO&WIM 2 9 January 1994

Patel-Schmeider, PU., Brahman, RJ., Levesqu, HL., "Argon: Knowledge Representation
Meets Information RetrievaL" Proceedings of the Furst Conference on Artificial Intelligence
Applications, 1984.

Payton, T., "Domain-Specific Reuse." STARS 92 Annotated Briefing, 1992.

Perry, Chilton, "Chemical Engineers' Handbook." 5th ed., 1973.

Perry, D.E., Wolf, A., "Foundations for the Study of Software Architecture." ACM SIGSOFT
Software Engineering Notes, VoL 17, No. 4, October 1992.

Peterson, S., "Mapping a Domain Model and Architecture to a Generic Design." CMU/SEI-
Technical Report, draft

Peterson, S., "Coming to Terms with Software Reuse Terminology: A Model-Based
Approach." ACM SIGSOFT Software Engineering Notes, April 1991.

Purtilo, J., "Software Bus Organization: Reference Model and Comparison of Two Existing
Systems." ARPA Module Interconnection Formalism Working Group Technical Note Series,
TN No. 8, November 1991.

Royce, W., Brown, D., "Architecting Distributed Realtime Ada Applications: The Software
Architect's Lifecycle Environment." Ada IX, 1991.

Salasin, J., Waugh, D., "An Approach to Analyzing Non-Functional Aspects During System
Definition." Draft Technical Paper, Proceedings of the ARPA/DSSA VII Workshop.

Saunders, Horowitz, Mleziva, "A New Process for Acquiring Software Architecture." MITRE
Corporation, 1993.

Sedgewick, "Algorithms in C." 1990.

Sedgewick, "Algorithms in C++." 1992.

Selfridge, P.O., "Knowledge Representation Support for a Software Information System."
Proceedings of the 7th Conference on Artificial Intelligence Applications, February 24-28,
1991.

Selfridge, P.G., Terveen, L.G., Long, M.D., "Managing Design Knowledge to Provide
Assistance to Large-Scale Software Development." Proceedings of the 7th Knowledge-Based
Software Engineering Conference, September 1992.

Shaw, M. "Prospects for an Engineering Discipline of Software." IEEE Software, November
1990.

B-5



STARS-VC-BDOOSAOI,00 29 January 1994

Shaw, M., -Larger Scale Systems Require Higher Lvel Abstractions." 5th International
Workshop on Software Specification and Design, May 1989.

Simos, M., "Organizational Domain Modeling." STARS Technical Report, Unisys
Corporation.

Singhal, V., Batory, D., "P4+: A Language for Software System Generators." Technical
Report TR-93-16, Department of Computer Science, University of Texas at Austin, 1993.

Taft, "Ada 9X: A Technical Summary." Communications of the ACM, November 1992.

Tracz, W., '"I EANNA A Parameterized Programming Language." Proceedings of the
Second International Workshop on Software Reusability, March 24-26, 1993.

Tracz, W., "A Conceptual Model for Megaprogrmming." ACM SIGSOFT Software
Engneering Notes, July 1991.

UNAS Th"ining Class, TRW Systems Engineerng & Development Division, DH2/1271,
Carson, CA, July 7-9, 1993.

Zachman, J., "A Framework for Information Systems Architecture." IBM Systems Journal,
Vol 26, No. 3, 1987.

The following sources are recommended for those interested in additional information.

Agrawala, Jackson, Vestal, "Domain-Specific Software Architectures for Intelligent
Guidance, Navigation and Control." DARPA Software Technology Conference, April 1992.

Bailin, S., "KAPTUR: Knowledge Acquisition for Preservation of Tradeoffs and Underlying
Rationales." Unpublished, 1993.

Belz, Luckham, Purtilo, "Application of ProtoTech Technology to the DSSA Program."
DARPA Software Technology Conference, April 1992.

Bhansali, Nil, "Software Design by Reusing Architectures." Proceedings of the 7th
Knowledge-Based Software Engineering Conference, September 1992.

Braun, Hatch, Ruegsegger, Balzer, Feather, Goldman, Wde, "Domain Specific Software
Architectures - Command and Control." DARPA Software Technology Conference, April
1992.

Coglianese, Goodwin, Smith, Tracz, Batory, Bellman, Gries, McAllester, Selby, Taylor, "An
Avionics Domain-Specific Software Architecture." DARPA Software Technology
Conference, April 1992.

B-6



STARS-VC,00 LW 29 Jwan y 1994

Coglisna. Tbaz, Newton, McAllester, Goguen, Taylor, Selby, Batory, "DSSA-ADAGE."
DSSA VII Briefing, July 1993.

Dasgupta, S., "A Hierarchical Taxonomic System for Computer Architectures." IEEE
Computer, March 1990.

Davis, A., "A Comparison of Techniques for the Specification of External System Behavior."
CACM, September 1988.

Fichman, Kema•', "Object-Oriented and Conventional Analysis and Design Methodologies:
Comparison and Critique." IEEE Computer, October 1992.

Fowler, M., "00 Methods: A Comparative View." Journal of Object Oriented Programming,
Supplement on 00 Analysis and Design, July/August 1993.

Graham, L, "Object-Oriented Methods." Addison Wesley, 1991.

Gruber, T., "Toward principles for the design of ontologies used for knowledge sharing."
Unpublished report, January 1993.

Guindon, R., "The Knowledge Exploited by Experts During Software System Design." MCC
STP-032-90, 1990.

Hayes-Roth, F, Erman, Terry, Hayes-Roth, B., "DSSA. Distributed Intelligent Control and
Management Applications and Development Support Environment." DARPA Software
Technology Conference, April 1992.

Jullig, R., "Applying Formal Software Synthesis." IEEE Software, May 1993.

Lalum, C., "Analysis of DCDS Data Model." STARS CDRL 3048R, January 1991.

Lee, J., "The 1992 Workshop on Design Rationale Capture and Use." Al Magazine, Summer
1993.

Long, Morris, "An Overview of PCTE: A Basis for a Portable Common Tool Environment."
CMU/SEI-TR-93-1, 1993.

Lubars, M., "The ROSE-2 Strategies for Supporting High Level Software Design Reuse."
Automating Software Design, 1991.

Lubars, M., "Domain Specific Software Architectures." MCC STP-RU-043-91, February
1991.

Meadow, C. L., Latour, L., "Layered Generic Architectures: A Methodology for the
Construction of Reusable Software Components." Prepared for the US Army CECOM Center
for Software Engineering, July 1991.

B-7



STARSIIC-B I 0 I II2I I JI 1994

Monarci, Pubr, "A Research Typology for Object-Oriented Analysis and Design." CACM,
September 1992.

Neches, Pikes, Finin, Gruber, Patil, Senator, Swartout, "Enabling Technology for Knowledge
Sharing." Al Magazine, Fall 1991.

Platek, R., "DSSAXs for Hybrid Control." DARPA Software Technology Conference, April
1992.

Schwanke, Altucher, Platoff "Discovering, Visualizing, and Controlling Software Structure."
5th Int onal Workshop on Software Specification and Design, May 1989.

Software Technology Support Center, "Requirements Analysis and Design Tools Report"
April 1992.

"Tracz, Coglianese, Young, "Domain-specific SW Architecture Engineering." ACM SIGSOFT
Software Engineering Notes, October 1992.

Tracz, W., "Megaprogramning and Domain Engineering Tutorial." ICSE 15, May 1993.

Tracz, Shafer, Coglianese, "DSSA-ADAGE Design Records." ADAGE-JBM-93-05, July
1993.

Vestal, S., "A Cursory Overview and Comparison of Four Architectural Description
Languages." Informal technical report, February 1993.

Vestal, S., "Host Environment Support for Architecture-Oriented Toolsets." Informal
technical report, March 1993.

Webster, D., "Mapping the Design Information Representation Terrain." IEEE Computer,
December 1986.

Wiederhold, Wegner, Ceri, "Toward Megaprogramming." CACM, November 1992.

Wood, Pethia, Gold, Firth, "A Guide to the Assessment of Software Development Methods"
Technical Report CMU/SEI-88-TR-8, 1988.

B-8


